IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1104-d106131.html
   My bibliography  Save this article

Assessment of Credible Capacity for Intermittent Distributed Energy Resources in Active Distribution Network

Author

Listed:
  • Chen Sun

    (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Dong Liu

    (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Yun Wang

    (Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Yi You

    (Electric Power Research Institute of Guangdong Power Grid Corporation, Guangzhou 510080, China)

Abstract

The irregularity and randomness of distributed energy sources’ (DERs) output power characteristic usually brings difficulties for grid analysis. In order to reliably and deterministically evaluate intermittent distributed generation’s active power output, a credible capacity index for active distribution network (ADN) is proposed. According to the definition, it is a certain interval that the stochastic active power output of DERs may fall in with larger probability in all kinds of possible dynamic and time varying operation scenarios. Based on the description and analysis on the time varying scenarios, multiple scenarios considered dynamic power flow method for and are proposed. The method to calculate and evaluate credible capacity based on dynamic power flow (DPF) result is illustrated. A study case of an active distribution network with DERs integrated and containing 32 nodes is selected; multiple operation scenarios with various fractal dimension are established and used. Results of calculated credible capacity based on several groups of scenarios have been analyzed, giving the variance analysis of groups of credible capacity values. A deterministic value with the maximum occurrence probability representing credible capacity is given. Based on the same network case, an application of credible capacity to grid extension planning is given, which contributes to expenditure and cost reduction. The effectiveness and significance of the proposed credible capacity and solution method have been demonstrated and verified.

Suggested Citation

  • Chen Sun & Dong Liu & Yun Wang & Yi You, 2017. "Assessment of Credible Capacity for Intermittent Distributed Energy Resources in Active Distribution Network," Energies, MDPI, vol. 10(8), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1104-:d:106131
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mokryani, Geev & Hu, Yim Fun & Pillai, Prashant & Rajamani, Haile-Selassie, 2017. "Active distribution networks planning with high penetration of wind power," Renewable Energy, Elsevier, vol. 104(C), pages 40-49.
    2. Fei Chen & Dong Liu & Xiaofang Xiong, 2017. "Research on Stochastic Optimal Operation Strategy of Active Distribution Network Considering Intermittent Energy," Energies, MDPI, vol. 10(4), pages 1-23, April.
    3. Katinas, Vladislovas & Sankauskas, Donatas & Markevičius, Antanas & Perednis, Eugenijus, 2014. "Investigation of the wind energy characteristics and power generation in Lithuania," Renewable Energy, Elsevier, vol. 66(C), pages 299-304.
    4. Yun Wang & Dong Liu & Chen Sun, 2017. "A Cyber Physical Model Based on a Hybrid System for Flexible Load Control in an Active Distribution Network," Energies, MDPI, vol. 10(3), pages 1-20, February.
    5. Wenpeng Yu & Dong Liu & Yuhui Huang, 2013. "Operation Optimization Based on the Power Supply and Storage Capacity of an Active Distribution Network," Energies, MDPI, vol. 6(12), pages 1-16, December.
    6. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwang Woo Joung & Hee-Jin Lee & Jung-Wook Park, 2019. "Assessment of Maximum Penetration Capacity of Photovoltaic Generator Considering Frequency Stability in Practical Stand-Alone Microgrid," Energies, MDPI, vol. 12(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandel, S.S. & Ramasamy, P. & Murthy, K.S.R, 2014. "Wind power potential assessment of 12 locations in western Himalayan region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 530-545.
    2. Yajing Gao & Wenhai Yang & Jing Zhu & Jiafeng Ren & Peng Li, 2017. "Evaluating the Effect of Distributed Generation on Power Supply Capacity in Active Distribution System Based on Sensitivity Analysis," Energies, MDPI, vol. 10(10), pages 1-14, September.
    3. Kubik, M.L. & Coker, P.J. & Hunt, C., 2012. "The role of conventional generation in managing variability," Energy Policy, Elsevier, vol. 50(C), pages 253-261.
    4. Ali A. Radwan & Ahmed A. Zaki Diab & Abo-Hashima M. Elsayed & Hassan Haes Alhelou & Pierluigi Siano, 2020. "Active Distribution Network Modeling for Enhancing Sustainable Power System Performance; a Case Study in Egypt," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    5. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    6. Flores, Juan J. & Graff, Mario & Rodriguez, Hector, 2012. "Evolutive design of ARMA and ANN models for time series forecasting," Renewable Energy, Elsevier, vol. 44(C), pages 225-230.
    7. Yıldıran, Uğur & Kayahan, İsmail, 2018. "Risk-averse stochastic model predictive control-based real-time operation method for a wind energy generation system supported by a pumped hydro storage unit," Applied Energy, Elsevier, vol. 226(C), pages 631-643.
    8. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    9. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    10. Pandžić, Hrvoje & Morales, Juan M. & Conejo, Antonio J. & Kuzle, Igor, 2013. "Offering model for a virtual power plant based on stochastic programming," Applied Energy, Elsevier, vol. 105(C), pages 282-292.
    11. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
    13. Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer," Energies, MDPI, vol. 10(7), pages 1-20, July.
    14. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    15. Seyed Reza Mirnezami & Amin Mohseni Cheraghlou, 2022. "Wind Power in Iran: Technical, Policy, and Financial Aspects for Better Energy Resource Management," Energies, MDPI, vol. 15(9), pages 1-18, April.
    16. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    17. Reikard, Gordon & Haupt, Sue Ellen & Jensen, Tara, 2017. "Forecasting ground-level irradiance over short horizons: Time series, meteorological, and time-varying parameter models," Renewable Energy, Elsevier, vol. 112(C), pages 474-485.
    18. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    19. Neeraj Bokde & Andrés Feijóo & Daniel Villanueva & Kishore Kulat, 2018. "A Novel and Alternative Approach for Direct and Indirect Wind-Power Prediction Methods," Energies, MDPI, vol. 11(11), pages 1-19, October.
    20. Ahmad, Muhammad Waseem & Mourshed, Monjur & Rezgui, Yacine, 2018. "Tree-based ensemble methods for predicting PV power generation and their comparison with support vector regression," Energy, Elsevier, vol. 164(C), pages 465-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1104-:d:106131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.