IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i1p5-d125334.html
   My bibliography  Save this article

Application of Tempered-Stable Time Fractional-Derivative Model to Upscale Subdiffusion for Pollutant Transport in Field-Scale Discrete Fracture Networks

Author

Listed:
  • Bingqing Lu

    (Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA)

  • Yong Zhang

    (Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA)

  • Donald M. Reeves

    (Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008, USA)

  • HongGuang Sun

    (College of Mechanics and Materials, Hohai University, Nanjing 210098, China)

  • Chunmiao Zheng

    (School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China)

Abstract

Fractional calculus provides efficient physical models to quantify non-Fickian dynamics broadly observed within the Earth system. The potential advantages of using fractional partial differential equations (fPDEs) for real-world problems are often limited by the current lack of understanding of how earth system properties influence observed non-Fickian dynamics. This study explores non-Fickian dynamics for pollutant transport in field-scale discrete fracture networks (DFNs), by investigating how fracture and rock matrix properties influence the leading and tailing edges of pollutant breakthrough curves (BTCs). Fractured reservoirs exhibit erratic internal structures and multi-scale heterogeneity, resulting in complex non-Fickian dynamics. A Monte Carlo approach is used to simulate pollutant transport through DFNs with a systematic variation of system properties, and the resultant non-Fickian transport is upscaled using a tempered-stable fractional in time advection–dispersion equation. Numerical results serve as a basis for determining both qualitative and quantitative relationships between BTC characteristics and model parameters, in addition to the impacts of fracture density, orientation, and rock matrix permeability on non-Fickian dynamics. The observed impacts of medium heterogeneity on tracer transport at late times tend to enhance the applicability of fPDEs that may be parameterized using measurable fracture–matrix characteristics.

Suggested Citation

  • Bingqing Lu & Yong Zhang & Donald M. Reeves & HongGuang Sun & Chunmiao Zheng, 2018. "Application of Tempered-Stable Time Fractional-Derivative Model to Upscale Subdiffusion for Pollutant Transport in Field-Scale Discrete Fracture Networks," Mathematics, MDPI, vol. 6(1), pages 1-16, January.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:1:p:5-:d:125334
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/1/5/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/1/5/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yong & Sun, HongGuang & Stowell, Harold H. & Zayernouri, Mohsen & Hansen, Samantha E., 2017. "A review of applications of fractional calculus in Earth system dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 29-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid, Muhammad & Usman, Muhammad & Yan, Yaping & Tian, Zhenfu, 2023. "A computational numerical algorithm for thermal characterization of fractional unsteady free convection flow in an open cavity," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Hamid, Muhammad & Usman, Muhammad & Yan, Yaping & Tian, Zhenfu, 2022. "An efficient numerical scheme for fractional characterization of MHD fluid model," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Adán J. Serna-Reyes & Jorge E. Macías-Díaz & Nuria Reguera, 2021. "A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    4. Prakash, Amit & Kumar, Manoj & Baleanu, Dumitru, 2018. "A new iterative technique for a fractional model of nonlinear Zakharov–Kuznetsov equations via Sumudu transform," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 30-40.
    5. Sabir, Zulqurnain & Raja, Muhammad Asif Zahoor & Guirao, Juan L.G. & Saeed, Tareq, 2021. "Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Huang, Chi-Hsiang & Tsai, Christina W. & Wu, Kuan-Ting, 2020. "Estimation of near-bed sediment concentrations in turbulent flow beyond normality," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Yong Zhang & Dongbao Zhou & Wei Wei & Jonathan M. Frame & Hongguang Sun & Alexander Y. Sun & Xingyuan Chen, 2021. "Hierarchical Fractional Advection-Dispersion Equation (FADE) to Quantify Anomalous Transport in River Corridor over a Broad Spectrum of Scales: Theory and Applications," Mathematics, MDPI, vol. 9(7), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:1:p:5-:d:125334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.