IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v166y2023ics0960077922010554.html
   My bibliography  Save this article

A computational numerical algorithm for thermal characterization of fractional unsteady free convection flow in an open cavity

Author

Listed:
  • Hamid, Muhammad
  • Usman, Muhammad
  • Yan, Yaping
  • Tian, Zhenfu

Abstract

A significant problem to study is how the fractional operators and physical structures may be interrelated and interconnected. The current model study reports the fractional time-dependent viscous, electric conductive fluid between two permeable infinitely large walls. The flow is driven by the mutual actions of imposed thermal buoyancy, pressure gradient, and transverse magnetic field of uniform strength. The suction and injection of the fluid take place at the right and left walls respectively. Transformations are used to convert the physical model into equivalent fractional partial differential equations (FPDEs). The finite difference computational code based on three difference fractional operators is developed to seek the behavior of modeled problem. The analysis of the model and code endorsement is provided through set of graphical plots and tabular form. It is noted that an increment into the Hartmann and Reynolds number causes a dropped pattern of the velocity while the drop is more substantial for the smaller choices of fractional parameters. Higher choices of heat source, thermal radiation, Ecker, pressure gradient and magnetic parameters cause an enhanced behavior of the thermal profile. The smaller values caused a slight increment on the thermal layer as higher choices of the fractional parameters. However, the patterns of the thermal and velocity layers are found clearer while using the ABC and CF fractional operators compared with the CC idea of fractional derivative.

Suggested Citation

  • Hamid, Muhammad & Usman, Muhammad & Yan, Yaping & Tian, Zhenfu, 2023. "A computational numerical algorithm for thermal characterization of fractional unsteady free convection flow in an open cavity," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010554
    DOI: 10.1016/j.chaos.2022.112876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922010554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Usman, Muhammad & Hamid, Muhammad & Liu, Moubin, 2021. "Novel operational matrices-based finite difference/spectral algorithm for a class of time-fractional Burger equation in multidimensions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    3. Hamid, Muhammad & Usman, Muhammad & Haq, Rizwan Ul & Tian, Zhenfu, 2021. "A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Yadav, Swati & Pandey, Rajesh K. & Shukla, Anil K., 2019. "Numerical approximations of Atangana–Baleanu Caputo derivative and its application," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 58-64.
    5. Hamid, Muhammad & Usman, Muhammad & Yan, Yaping & Tian, Zhenfu, 2022. "An efficient numerical scheme for fractional characterization of MHD fluid model," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Zhang, Yong & Sun, HongGuang & Stowell, Harold H. & Zayernouri, Mohsen & Hansen, Samantha E., 2017. "A review of applications of fractional calculus in Earth system dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 29-46.
    7. Hanif, Hanifa, 2022. "A computational approach for boundary layer flow and heat transfer of fractional Maxwell fluid," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid, Muhammad & Usman, Muhammad & Yan, Yaping & Tian, Zhenfu, 2022. "An efficient numerical scheme for fractional characterization of MHD fluid model," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Cao, Baiheng & Wu, Xuedong & Wang, Yaonan & Zhu, Zhiyu, 2024. "Modified hybrid B-spline estimation based on spatial regulator tensor network for burger equation with nonlinear fractional calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 253-275.
    3. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    4. Logeswari, K. & Ravichandran, C., 2020. "A new exploration on existence of fractional neutral integro- differential equations in the concept of Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    5. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    7. Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Aimene, D. & Baleanu, D. & Seba, D., 2019. "Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 51-57.
    9. Peng, Li & Zhou, Yong & Debbouche, Amar, 2019. "Approximation techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 234-241.
    10. Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
    11. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    12. Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
    13. Tajani, Asmae & El Alaoui, Fatima-Zahrae & Boutoulout, Ali, 2022. "Regional boundary controllability of semilinear subdiffusion Caputo fractional systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 481-496.
    14. Doungmo Goufo, Emile F. & Mbehou, Mohamed & Kamga Pene, Morgan M., 2018. "A peculiar application of Atangana–Baleanu fractional derivative in neuroscience: Chaotic burst dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 170-176.
    15. Ravichandran, C. & Logeswari, K. & Jarad, Fahd, 2019. "New results on existence in the framework of Atangana–Baleanu derivative for fractional integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 194-200.
    16. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    18. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    19. Ghanbari, Behzad & Atangana, Abdon, 2020. "A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    20. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922010554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.