IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i10p190-d173591.html
   My bibliography  Save this article

Price and Treatment Decisions in Epidemics: A Differential Game Approach

Author

Listed:
  • Andrea Di Liddo

    (Department of Economics, University of Foggia, Largo Papa Giovanni Paolo II, 71121 Foggia, Italy)

Abstract

We consider a pharmaceutical company that sells a drug that is useful in the treatment of an infectious disease. A public authority buys the drug to heal at least a portion of the infected population. The authority has an overall budget for all health care costs in the country and can only allocate a (small) part of the budget to the purchase of the drug. The government chooses the amount of drug to be purchased in order to minimize both the number of infectious people and the perceived cost of the operation along a given time horizon. This cost can be modeled through a linear or quadratic function of the monetary cost (as generally happens in the literature) or through a specific function (blow-up) that makes the budget constraint endogenous. The pharmaceutical company chooses the price of the drug in order to maximize its profit and knowing the budget constraints of the buyer. The resulting differential game is studied by supposing the simplest possible dynamics for the population. Two different games are proposed and their solutions are discussed: a cooperative game in which the two players bargain for the price of the drug and the quantity is purchased with the aim of maximizing the overall payoff and a competitive game in which the seller announces a price strategy to the buyer and binds to it; the buyer reacts by choosing the quantity to be purchased. In the case of linear or quadratic costs, the solution provided (for budget levels is not high enough) that the government spends the entire budget to purchase the drug. This drawback does not occur when the blow-up cost function is used.

Suggested Citation

  • Andrea Di Liddo, 2018. "Price and Treatment Decisions in Epidemics: A Differential Game Approach," Mathematics, MDPI, vol. 6(10), pages 1-19, October.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:10:p:190-:d:173591
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/10/190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/10/190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jana, Soovoojeet & Haldar, Palash & Kar, T.K., 2016. "Optimal control and stability analysis of an epidemic model with population dispersal," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 67-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baogui Xin & Wei Peng & Minghe Sun, 2019. "Optimal Coordination Strategy for International Production Planning and Pollution Abating under Cap-and-Trade Regulations," IJERPH, MDPI, vol. 16(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abbasi, Zohreh & Zamani, Iman & Mehra, Amir Hossein Amiri & Shafieirad, Mohsen & Ibeas, Asier, 2020. "Optimal Control Design of Impulsive SQEIAR Epidemic Models with Application to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Andrea Di Liddo, 2016. "Optimal Control and Treatment of Infectious Diseases. The Case of Huge Treatment Costs," Mathematics, MDPI, vol. 4(2), pages 1-27, April.
    3. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    4. Debbouche, Amar & Antonov, Valery, 2017. "Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 140-148.
    5. Yi Xie & Ziheng Zhang & Yan Wu & Shuang Li & Liuyong Pang & Yong Li, 2024. "Time-Delay Dynamic Model and Cost-Effectiveness Analysis of Major Emergent Infectious Diseases with Transportation-Related Infection and Entry-Exit Screening," Mathematics, MDPI, vol. 12(13), pages 1-25, July.
    6. Kar, T.K. & Nandi, Swapan Kumar & Jana, Soovoojeet & Mandal, Manotosh, 2019. "Stability and bifurcation analysis of an epidemic model with the effect of media," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 188-199.
    7. Feng, Liang & Zhao, Qianchuan & Zhou, Cangqi, 2020. "Epidemic in networked population with recurrent mobility pattern," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:10:p:190-:d:173591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.