IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304148.html
   My bibliography  Save this article

Epidemic in networked population with recurrent mobility pattern

Author

Listed:
  • Feng, Liang
  • Zhao, Qianchuan
  • Zhou, Cangqi

Abstract

The novel Coronavirus (COVID-19) has caused a global crisis and many governments have taken social measures, such as home quarantine and maintaining social distance. Many recent studies show that network structure and human mobility greatly influence the dynamics of epidemic spreading. In this paper, we utilize a discrete-time Markov chain approach and propose an epidemic model to describe virus propagation in the heterogeneous graph, which is used to represent individuals with intra social connections and mobility between individuals and common locations. There are two types of nodes, individuals and public places, and disease can spread by social contacts among individuals and people gathering in common areas. We give theoretical results about epidemic threshold and influence of isolation factor. Several numerical simulations are performed and experimental results further demonstrate the correctness of proposed model. Non-monotonic relationship between mobility possibility and epidemic threshold and differences between Erdös-Rényi and power-law social connections are revealed. In summary, our proposed approach and findings are helpful to analyse and prevent the epidemic spreading in networked population with recurrent mobility pattern.

Suggested Citation

  • Feng, Liang & Zhao, Qianchuan & Zhou, Cangqi, 2020. "Epidemic in networked population with recurrent mobility pattern," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304148
    DOI: 10.1016/j.chaos.2020.110016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jin-Xuan, 2020. "The spreading of infectious diseases with recurrent mobility of community population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. V. Belik & T. Geisel & D. Brockmann, 2011. "Recurrent host mobility in spatial epidemics: beyond reaction-diffusion," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 84(4), pages 579-587, December.
    3. Martin Rosvall & Alcides V. Esquivel & Andrea Lancichinetti & Jevin D. West & Renaud Lambiotte, 2014. "Memory in network flows and its effects on spreading dynamics and community detection," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    4. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    5. Jana, Soovoojeet & Haldar, Palash & Kar, T.K., 2016. "Optimal control and stability analysis of an epidemic model with population dispersal," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 67-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Xin & Cai, Chao-Ran, 2021. "Analytical computation of the epidemic prevalence and threshold for the discrete-time susceptible–infected–susceptible dynamics on static networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jin-Xuan, 2020. "The spreading of infectious diseases with recurrent mobility of community population," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Chao Min & Qingyu Chen & Erjia Yan & Yi Bu & Jianjun Sun, 2021. "Citation cascade and the evolution of topic relevance," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(1), pages 110-127, January.
    3. Andrea Di Liddo, 2018. "Price and Treatment Decisions in Epidemics: A Differential Game Approach," Mathematics, MDPI, vol. 6(10), pages 1-19, October.
    4. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    5. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    6. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    7. Xie, Xiaoxiao & Huo, Liang'an, 2024. "Co-evolution dynamics between information and epidemic with asymmetric activity levels and community structure in time-varying multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Chakraborty, Abhijit & Krichene, Hazem & Inoue, Hiroyasu & Fujiwara, Yoshi, 2019. "Characterization of the community structure in a large-scale production network in Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 210-221.
    9. Gong, Chang & Li, Jichao & Qian, Liwei & Li, Siwei & Yang, Zhiwei & Yang, Kewei, 2024. "HMSL: Source localization based on higher-order Markov propagation," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    10. Bowen Yan & Steve Gregory, 2013. "Identifying Communities and Key Vertices by Reconstructing Networks from Samples," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-14, April.
    11. Zhou, Bin & Yan, Xiao-Yong & Xu, Xiao-Ke & Xu, Xiao-Ting & Wang, Nianxin, 2018. "Evolutionary of online social networks driven by pareto wealth distribution and bidirectional preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 427-434.
    12. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    13. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2018. "Group based centrality for immunization of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 35-47.
    14. Yang, Alex Jie & Wu, Linwei & Zhang, Qi & Wang, Hao & Deng, Sanhong, 2023. "The k-step h-index in citation networks at the paper, author, and institution levels," Journal of Informetrics, Elsevier, vol. 17(4).
    15. Stephen J Gilmore, 2011. "Control Strategies for Endemic Childhood Scabies," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-14, January.
    16. Kotnis, Bhushan & Kuri, Joy, 2016. "Cost effective campaigning in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 670-681.
    17. Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    18. Xie, Fengjie & Ma, Mengdi & Ren, Cuiping, 2022. "Research on multilayer network structure characteristics from a higher-order model: The case of a Chinese high-speed railway system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    19. Abbasi, Zohreh & Zamani, Iman & Mehra, Amir Hossein Amiri & Shafieirad, Mohsen & Ibeas, Asier, 2020. "Optimal Control Design of Impulsive SQEIAR Epidemic Models with Application to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    20. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.