IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v2y2014i3p136-171d40002.html
   My bibliography  Save this article

Modeling the Influence of Environment and Intervention onCholera in Haiti

Author

Listed:
  • Stephen Tennenbaum

    (Department of Mathematics, The George Washington University, 2115 G St. NW, Washington,DC 20052, USA)

  • Caroline Freitag

    (Department of Mathematics, The George Washington University, 2115 G St. NW, Washington,DC 20052, USA)

  • Svetlana Roudenko

    (Department of Mathematics, The George Washington University, 2115 G St. NW, Washington,DC 20052, USA)

Abstract

We propose a simple model with two infective classes in order to model the cholera epidemic in Haiti. We include the impact of environmental events (rainfall, temperature and tidal range) on the epidemic in the Artibonite and Ouest regions by introducing terms in the transmission rate that vary with environmental conditions. We fit the model on weekly data from the beginning of the epidemic until December 2013, including the vaccination programs that were recently undertaken in the Ouest and Artibonite regions. We then modified these projections excluding vaccination to assess the programs’ effectiveness. Using real-time daily rainfall, we found lag times between precipitation events and new cases that range from 3:4 to 8:4 weeks in Artibonite and 5:1 to 7:4 in Ouest. In addition, it appears that, in the Ouest region, tidal influences play a significant role in the dynamics of the disease. Intervention efforts of all types have reduced case numbers in both regions; however, persistent outbreaks continue. In Ouest, where the population at risk seems particularly besieged and the overall population is larger, vaccination efforts seem to be taking hold more slowly than in Artibonite, where a smaller core population was vaccinated. The models including the vaccination programs predicted that a year and six months later, the mean number of cases in Artibonite would be reduced by about two thousand cases, and in Ouest by twenty four hundred cases below that predicted by the models without vaccination. We also found that vaccination is best when done in the early spring, and as early as possible in the epidemic. Comparing vaccination between the first spring and the second, there is a drop of about 40% in the case reduction due to the vaccine and about 10% per year after that.

Suggested Citation

  • Stephen Tennenbaum & Caroline Freitag & Svetlana Roudenko, 2014. "Modeling the Influence of Environment and Intervention onCholera in Haiti," Mathematics, MDPI, vol. 2(3), pages 1-36, September.
  • Handle: RePEc:gam:jmathe:v:2:y:2014:i:3:p:136-171:d:40002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/2/3/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/2/3/136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katia Koelle & Xavier Rodó & Mercedes Pascual & Md. Yunus & Golam Mostafa, 2005. "Refractory periods and climate forcing in cholera dynamics," Nature, Nature, vol. 436(7051), pages 696-700, August.
    2. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    2. Jaeger, Jonathan & Lambert, Philippe, 2012. "Bayesian penalized smoothing approaches in models specified using affine differential equations with unknown error distributions," LIDAM Discussion Papers ISBA 2012017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Cao, Jiguo & Ramsay, James O., 2009. "Generalized profiling estimation for global and adaptive penalized spline smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2550-2562, May.
    4. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    5. Hooker, Giles & Ramsay, James O. & Xiao, Luo, 2016. "CollocInfer: Collocation Inference in Differential Equation Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i02).
    6. Margherita Grasso & Matteo Manera & Aline Chiabai & Anil Markandya, 2012. "The Health Effects of Climate Change: A Survey of Recent Quantitative Research," IJERPH, MDPI, vol. 9(5), pages 1-25, April.
    7. Gianluca Frasso & Jonathan Jaeger & Philippe Lambert, 2016. "Parameter estimation and inference in dynamic systems described by linear partial differential equations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 259-287, July.
    8. Pascal Deboeck & Steven Boker, 2010. "Modeling Noisy Data with Differential Equations Using Observed and Expected Matrices," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 420-437, September.
    9. Pamela P Martinez & Robert C Reiner Jr. & Benjamin A Cash & Xavier Rodó & Mohammad Shahjahan Mondal & Manojit Roy & Mohammad Yunus & A S G Faruque & Sayeeda Huq & Aaron A King & Mercedes Pascual, 2017. "Cholera forecast for Dhaka, Bangladesh, with the 2015-2016 El Niño: Lessons learned," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-12, March.
    10. Adeboyejo Aina Thompson & Lirvhuwani Matamale & Shonisani Danisa Kharidza, 2012. "Impact of Climate Change on Children’s Health in Limpopo Province, South Africa," IJERPH, MDPI, vol. 9(3), pages 1-24, March.
    11. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2015. "On the selection of ordinary differential equation models with application to predator-prey dynamical models," Biometrics, The International Biometric Society, vol. 71(1), pages 131-138, March.
    12. Olena Kostylenko & Helena Sofia Rodrigues & Delfim F. M. Torres, 2019. "Parametric identification of the dynamics of inter-sectoral balance: modelling and forecasting," Papers 1904.00029, arXiv.org.
    13. Mu Niu & Joe Wandy & Rónán Daly & Simon Rogers & Dirk Husmeier, 2021. "R package for statistical inference in dynamical systems using kernel based gradient matching: KGode," Computational Statistics, Springer, vol. 36(1), pages 715-747, March.
    14. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    15. Steffen Borchers & Sandro Bosio & Rolf Findeisen & Utz-Uwe Haus & Philipp Rumschinski & Robert Weismantel, 2011. "Graph problems arising from parameter identification of discrete dynamical systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 73(3), pages 381-400, June.
    16. Christian Genest & Johanna G. Nešlehová, 2014. "A Conversation with James O. Ramsay," International Statistical Review, International Statistical Institute, vol. 82(2), pages 161-183, August.
    17. Shizhe Chen & Ali Shojaie & Daniela M. Witten, 2017. "Network Reconstruction From High-Dimensional Ordinary Differential Equations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1697-1707, October.
    18. Ahn, Kwang Woo & Chan, Kung-Sik, 2014. "Approximate conditional least squares estimation of a nonlinear state-space model via an unscented Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 243-254.
    19. Laura M. Sangalli & James O. Ramsay & Timothy O. Ramsay, 2013. "Spatial spline regression models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 681-703, September.
    20. Min Xu & Chunxiang Cao & Duochun Wang & Biao Kan, 2014. "Identifying Environmental Risk Factors of Cholera in a Coastal Area with Geospatial Technologies," IJERPH, MDPI, vol. 12(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:2:y:2014:i:3:p:136-171:d:40002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.