IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p488-d1581358.html
   My bibliography  Save this article

A Dual Tandem Queue as a Model of a Pick-Up Point with Batch Receipt and Issue of Parcels

Author

Listed:
  • Alexander N. Dudin

    (Department of Applied Mathematics and Computer Science, Belarusian State University, 4, Nezavisimosti Ave., 220030 Minsk, Belarus
    R&D Center, Baku Engineering University, Hasan Aliyev Str., 120, Khirdalan City AZ0101, Absheron, Azerbaijan)

  • Olga S. Dudina

    (Department of Applied Mathematics and Computer Science, Belarusian State University, 4, Nezavisimosti Ave., 220030 Minsk, Belarus)

  • Sergei A. Dudin

    (Department of Applied Mathematics and Computer Science, Belarusian State University, 4, Nezavisimosti Ave., 220030 Minsk, Belarus)

  • Agassi Melikov

    (Department of Mathematics and Computer Science, Baku Engineering University, Hasan Aliyev Str., 120, Khirdalan City AZ0101, Absheron, Azerbaijan)

Abstract

Parcel delivery networks have grown rapidly during the last few years due to the intensive evolution of online marketplaces. We address the issue of managing the operation of a network’s pick-up point, including the selection of the warehouse’s capacity and the policy for accepting orders for delivery. The existence of the time lag between order placing and delivery to the pick-up point is accounted for via modeling the order’s processing as the service in the dual tandem queueing system. Distinguishing features of this tandem queue are the account of possible irregularity in order generation via consideration of the versatile Markov arrival process and the possibilities of batch transfer of the orders to the pick-up point, group withdrawal of orders there, and client no-show. To reduce the probability of an order rejection at the pick-up point due to the overflow of the warehouse, a threshold strategy of order admission at the first stage on a tandem is proposed. Under the fixed value of the threshold, tandem operation is described by the continuous-time multidimensional Markov chain with a block lower Hessenberg structure for the generator. Stationary performance measures of the tandem system are calculated. Numerical results highlight the dependence of these measures on the capacity of the warehouse and the admission threshold. The possibility of the use of the results for managerial goals is demonstrated. In particular, the results can be used for the optimal selection of the capacity of a warehouse and the policy of suspending order admission.

Suggested Citation

  • Alexander N. Dudin & Olga S. Dudina & Sergei A. Dudin & Agassi Melikov, 2025. "A Dual Tandem Queue as a Model of a Pick-Up Point with Batch Receipt and Issue of Parcels," Mathematics, MDPI, vol. 13(3), pages 1-19, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:488-:d:1581358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/488/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/488/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baumann, Hendrik & Sandmann, Werner, 2017. "Multi-server tandem queue with Markovian arrival process, phase-type service times, and finite buffers," European Journal of Operational Research, Elsevier, vol. 256(1), pages 187-195.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Fu & Wenjun Chang, 2024. "A Markov Chain-Based Group Consensus Method with Unknown Parameters," Group Decision and Negotiation, Springer, vol. 33(5), pages 1019-1048, October.
    2. Michael Vidalis & Stelios Koukoumialos & Alexandros Diamantidis & George Blanas, 2022. "Analysis of a two echelon supply chain with merging suppliers, a storage area and a distribution center with parallel channels," Operational Research, Springer, vol. 22(1), pages 703-740, March.
    3. Liu, Baoliang & Wen, Yanqing & Qiu, Qingan & Shi, Haiyan & Chen, Jianhui, 2022. "Reliability analysis for multi-state systems under K-mixed redundancy strategy considering switching failure," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Asadabadi, Mehdi Rajabi, 2017. "A customer based supplier selection process that combines quality function deployment, the analytic network process and a Markov chain," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1049-1062.
    5. Chesoong Kim & Sergei Dudin & Olga Dudina, 2019. "Queueing Network with Moving Servers as a Model of Car Sharing Systems," Mathematics, MDPI, vol. 7(9), pages 1-17, September.
    6. Dudin, A.N. & Dudin, S.A. & Dudina, O.S. & Samouylov, K.E., 2018. "Analysis of queueing model with processor sharing discipline and customers impatience," Operations Research Perspectives, Elsevier, vol. 5(C), pages 245-255.
    7. Dudin, A.N. & Dudin, S.A. & Dudina, O.S. & Samouylov, K.E., 2020. "Competitive queueing systems with comparative rating dependent arrivals," Operations Research Perspectives, Elsevier, vol. 7(C).
    8. Hanukov, Gabi, 2022. "Improving efficiency of service systems by performing a part of the service without the customer's presence," European Journal of Operational Research, Elsevier, vol. 302(2), pages 606-620.
    9. Sina Ansari & Seyed M. R. Iravani & Qifeng Shao, 2019. "Optimal control policies in service systems with limited information on the downstream stage," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(5), pages 367-392, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:488-:d:1581358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.