IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p479-d1581067.html
   My bibliography  Save this article

Explicit Formulas for Hedging Parameters of Perpetual American Options with General Payoffs: A Mellin Transform Approach

Author

Listed:
  • Stefan Zecevic

    (School of Mathematics and Applied Statistics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
    These authors contributed equally to this work.)

  • Mariano Rodrigo

    (School of Mathematics and Applied Statistics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
    These authors contributed equally to this work.)

Abstract

Risk is often the most concerning factor in financial transactions. Option Greeks provide valuable insights into the risks inherent in option trading and serve as tools for risk mitigation. Traditionally, scholars compute option Greeks through extensive calculations. This article introduces an alternative method that bypasses conventional derivative computation using the Mellin transform and its properties. Specifically, we derive Greeks for perpetual American options with general payoffs, represented as piecewise linear functions, and examine higher-order risk metrics for practical implications. Examples are provided to illustrate the effectiveness of our approach, offering a novel perspective on calculating and interpreting option Greeks.

Suggested Citation

  • Stefan Zecevic & Mariano Rodrigo, 2025. "Explicit Formulas for Hedging Parameters of Perpetual American Options with General Payoffs: A Mellin Transform Approach," Mathematics, MDPI, vol. 13(3), pages 1-37, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:479-:d:1581067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Guillaume Bernis & Emmanuel Gobet & Arturo Kohatsu‐Higa, 2003. "Monte Carlo Evaluation of Greeks for Multidimensional Barrier and Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 13(1), pages 99-113, January.
    3. Davis, Mark H.A. & Johansson, Martin P., 2006. "Malliavin Monte Carlo Greeks for jump diffusions," Stochastic Processes and their Applications, Elsevier, vol. 116(1), pages 101-129, January.
    4. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux, 2001. "Applications of Malliavin calculus to Monte-Carlo methods in finance. II," Finance and Stochastics, Springer, vol. 5(2), pages 201-236.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    3. G. D’Amico & R. Blasis & V. Vigna, 2024. "Advertising investments on television: real option estimation through Markov chains," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(5), pages 4661-4678, October.
    4. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    5. Muroi, Yoshifumi & Suda, Shintaro, 2017. "Computation of Greeks in jump-diffusion models using discrete Malliavin calculus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 140(C), pages 69-93.
    6. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    7. Douglas A. Bodner & William B. Rouse, 2007. "Understanding R&D value creation with organizational simulation," Systems Engineering, John Wiley & Sons, vol. 10(1), pages 64-82, March.
    8. Charilaos Mertzanis, 2013. "Risk Management Challenges after the Financial Crisis," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 42(3), pages 285-320, November.
    9. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    10. Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
    11. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    12. Francois-Michel Boire & R. Mark Reesor & Lars Stentoft, 2021. "American Option Pricing with Importance Sampling and Shifted Regressions," JRFM, MDPI, vol. 14(8), pages 1-21, July.
    13. Wei-Cheng Chen & Wei-Ho Chung, 2019. "Option Pricing via Multi-path Autoregressive Monte Carlo Approach," Papers 1906.06483, arXiv.org.
    14. Grosen, Anders & Lochte Jorgensen, Peter, 2000. "Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 37-57, February.
    15. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    16. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    17. Jin-Chuan Duan & Evan Dudley & Geneviève Gauthier & Jean-Guy Simonato, 1999. "Pricing Discretely Monitored Barrier Options by a Markov Chain," CIRANO Working Papers 99s-15, CIRANO.
    18. Dietmar P.J. Leisen, 1997. "The Random-Time Binomial Model," Finance 9711005, University Library of Munich, Germany, revised 29 Nov 1998.
    19. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    20. Ben-Ameur, Hatem & de Frutos, Javier & Fakhfakh, Tarek & Diaby, Vacaba, 2013. "Upper and lower bounds for convex value functions of derivative contracts," Economic Modelling, Elsevier, vol. 34(C), pages 69-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:479-:d:1581067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.