IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i2p310-d1570342.html
   My bibliography  Save this article

Ordinal Random Tree with Rank-Oriented Feature Selection (ORT-ROFS): A Novel Approach for the Prediction of Road Traffic Accident Severity

Author

Listed:
  • Bita Ghasemkhani

    (Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir 35390, Turkey)

  • Kadriye Filiz Balbal

    (Department of Computer Science, Dokuz Eylul University, Izmir 35390, Turkey)

  • Kokten Ulas Birant

    (Department of Computer Engineering, Dokuz Eylul University, Izmir 35390, Turkey
    Information Technologies Research and Application Center (DEBTAM), Dokuz Eylul University, Izmir 35390, Turkey)

  • Derya Birant

    (Department of Computer Engineering, Dokuz Eylul University, Izmir 35390, Turkey)

Abstract

Road traffic accident severity prediction is crucial for implementing effective safety measures and proactive traffic management strategies. Existing methods often treat this as a nominal classification problem and use traditional feature selection techniques. However, ordinal classification methods that account for the ordered nature of accident severity (e.g., slight < serious < fatal injuries) in feature selection still need to be investigated thoroughly. In this study, we propose a novel approach, the Ordinal Random Tree with Rank-Oriented Feature Selection (ORT-ROFS), which utilizes the inherent ordering of class labels both in the feature selection and prediction stages for accident severity classification. The proposed approach enhances the model performance by separately determining feature importance based on severity levels. The experiments demonstrated the effectiveness of ORT-ROFS with an accuracy of 87.19%. According to the results, the proposed method improved prediction accuracy by 10.81% over state-of-the-art studies on average on different train–test split ratios. In addition, it achieved an average improvement of 4.58% in accuracy over traditional methods. These findings suggest that ORT-ROFS is a promising approach for accurate accident severity prediction, supporting road safety planning and intervention strategies.

Suggested Citation

  • Bita Ghasemkhani & Kadriye Filiz Balbal & Kokten Ulas Birant & Derya Birant, 2025. "Ordinal Random Tree with Rank-Oriented Feature Selection (ORT-ROFS): A Novel Approach for the Prediction of Road Traffic Accident Severity," Mathematics, MDPI, vol. 13(2), pages 1-26, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:310-:d:1570342
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/2/310/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/2/310/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:310-:d:1570342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.