IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p9076-d1163659.html
   My bibliography  Save this article

Self-Paced Ensemble-SHAP Approach for the Classification and Interpretation of Crash Severity in Work Zone Areas

Author

Listed:
  • Roksana Asadi

    (Department of Civil and Environmental Engineering New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA)

  • Afaq Khattak

    (The Key Laboratory of Infrastructure Durability and Operation Safety in Airfield of CAAC, Tongji University, 4800 Cao’an Road, Shanghai 201804, China)

  • Hossein Vashani

    (Rutgers Business School, Rutgers University, Newark, NJ 07102, USA)

  • Hamad R. Almujibah

    (Department of Civil Engineering, College of Engineering, Taif University, Taif City 21974, Saudi Arabia)

  • Helia Rabie

    (Department of Economics, The Graduate Center, City University of New York, New York, NY 10016, USA)

  • Seyedamirhossein Asadi

    (Department of Civil Engineering, K.N. Toosi University of Technology, Tehran 15433-19967, Iran)

  • Branislav Dimitrijevic

    (Department of Civil and Environmental Engineering New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA)

Abstract

The identification of causative factors and implementation of measures to mitigate work zone crashes can significantly improve overall road safety. This study introduces a Self-Paced Ensemble (SPE) framework, which is utilized in conjunction with the Shapley additive explanations (SHAP) interpretation system, to predict and interpret the severity of work-zone-related crashes. The proposed methodology is an ensemble learning approach that aims to mitigate the issue of imbalanced classification in datasets of significant magnitude. The proposed solution provides an intuitive way to tackle issues related to imbalanced classes, demonstrating remarkable computational efficacy, praiseworthy accuracy, and extensive adaptability to various machine learning models. The study employed work zone crash data from the state of New Jersey spanning a period of two years (2017 and 2018) to train and evaluate the model. The study compared the prediction outcomes of the SPE model with various tree-based machine learning models, such as Light Gradient Boosting Machine, adaptive boosting, and classification and regression tree, along with binary logistic regression. The performance of the SPE model was superior to that of tree-based machine learning models and binary logistic regression. According to the SHAP interpretation, the variables that exhibited the highest degree of influence were crash type, road system, and road median type. According to the model, on highways with barrier-type medians, it is expected that crashes that happen in the same direction and those that happen at a right angle will be the most severe crashes. Additionally, this study found that severe injuries were more likely to result from work zone crashes that happened at night on state highways with localized street lighting.

Suggested Citation

  • Roksana Asadi & Afaq Khattak & Hossein Vashani & Hamad R. Almujibah & Helia Rabie & Seyedamirhossein Asadi & Branislav Dimitrijevic, 2023. "Self-Paced Ensemble-SHAP Approach for the Classification and Interpretation of Crash Severity in Work Zone Areas," Sustainability, MDPI, vol. 15(11), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:9076-:d:1163659
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/9076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/9076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sheng Dong & Afaq Khattak & Irfan Ullah & Jibiao Zhou & Arshad Hussain, 2022. "Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations," IJERPH, MDPI, vol. 19(5), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    2. Afaq Khattak & Hamad Almujibah & Ahmed Elamary & Caroline Mongina Matara, 2022. "Interpretable Dynamic Ensemble Selection Approach for the Prediction of Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    3. Munim, Ziaul Haque & Sørli, Michael André & Kim, Hyungju & Alon, Ilan, 2024. "Predicting maritime accident risk using Automated Machine Learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Aleksandar Aleksić & Milan Ranđelović & Dragan Ranđelović, 2023. "Using Machine Learning in Predicting the Impact of Meteorological Parameters on Traffic Incidents," Mathematics, MDPI, vol. 11(2), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:9076-:d:1163659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.