IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v419y2015icp408-416.html
   My bibliography  Save this article

Community detection by fuzzy clustering

Author

Listed:
  • Sun, Peng Gang

Abstract

How to measure the similarity between nodes is of great importance for fuzzy clustering when we use the approach to uncover communities in complex networks. In this paper, we first measure the similarity between nodes in a network based on edge centralities and model the network as a fuzzy relation. Then, two fuzzy transitive rules (Rule I and Rule II) are applied on the relation respectively, by which the similarity information can be transferred from one node to another in the network until the relation reaches a stable state. By choosing different thresholds, our method finally can partition the network into several non-overlapping subgroups. We compare our method with some state of the art methods on the LFR benchmark and real-world networks. We find that our method based on Rule I can correctly identify communities when the similarity between nodes of same groups is greater than that of different groups, while it is just opposite to Rule II. Our method achieves better results than the state of the art methods when the pre-planted communities of the random networks are vaguer.

Suggested Citation

  • Sun, Peng Gang, 2015. "Community detection by fuzzy clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 408-416.
  • Handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:408-416
    DOI: 10.1016/j.physa.2014.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114008474
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Yong-Yeol Ahn & James P. Bagrow & Sune Lehmann, 2010. "Link communities reveal multiscale complexity in networks," Nature, Nature, vol. 466(7307), pages 761-764, August.
    3. Martin Rosvall & Carl T Bergstrom, 2011. "Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-10, April.
    4. Sun, Peng Gang, 2014. "Weighting links based on edge centrality for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 346-357.
    5. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    6. Zhang, Shihua & Wang, Rui-Sheng & Zhang, Xiang-Sun, 2007. "Identification of overlapping community structure in complex networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 483-490.
    7. Andrea Lancichinetti & Filippo Radicchi & José J Ramasco & Santo Fortunato, 2011. "Finding Statistically Significant Communities in Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-18, April.
    8. Sun, Peng Gang & Yang, Yang, 2013. "Methods to find community based on edge centrality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 1977-1988.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dušan Džamić & Daniel Aloise & Nenad Mladenović, 2019. "Ascent–descent variable neighborhood decomposition search for community detection by modularity maximization," Annals of Operations Research, Springer, vol. 272(1), pages 273-287, January.
    2. Xin, Xin & Wang, Chaokun & Ying, Xiang & Wang, Boyang, 2017. "Deep community detection in topologically incomplete networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 342-352.
    3. Deng, Zheng-Hong & Qiao, Hong-Hai & Song, Qun & Gao, Li, 2019. "A complex network community detection algorithm based on label propagation and fuzzy C-means," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 217-226.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Peng Gang & Sun, Xiya, 2017. "Complete graph model for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 88-97.
    2. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    3. Sun, Peng Gang, 2016. "Imbalance problem in community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 364-376.
    4. Zhou, Xu & Liu, Yanheng & Zhang, Jindong & Liu, Tuming & Zhang, Di, 2015. "An ant colony based algorithm for overlapping community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 289-301.
    5. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    6. Franke, R., 2016. "CHIMERA: Top-down model for hierarchical, overlapping and directed cluster structures in directed and weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 384-408.
    7. Wang, Yuyao & Bu, Zhan & Yang, Huan & Li, Hui-Jia & Cao, Jie, 2021. "An effective and scalable overlapping community detection approach: Integrating social identity model and game theory," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    8. Xiaofeng Wang & Gongshen Liu & Jianhua Li & Jan P Nees, 2017. "Locating Structural Centers: A Density-Based Clustering Method for Community Detection," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-23, January.
    9. Lovro Šubelj & Nees Jan van Eck & Ludo Waltman, 2016. "Clustering Scientific Publications Based on Citation Relations: A Systematic Comparison of Different Methods," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-23, April.
    10. Akshat Singhal & Song Cao & Christopher Churas & Dexter Pratt & Santo Fortunato & Fan Zheng & Trey Ideker, 2020. "Multiscale community detection in Cytoscape," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-10, October.
    11. Chen, Duanbing & Shang, Mingsheng & Lv, Zehua & Fu, Yan, 2010. "Detecting overlapping communities of weighted networks via a local algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4177-4187.
    12. Yi-Shan Sung & Dashun Wang & Soundar Kumara, 0. "Uncovering the effect of dominant attributes on community topology: A case of facebook networks," Information Systems Frontiers, Springer, vol. 0, pages 1-12.
    13. Lan Huang & Guishen Wang & Yan Wang & Enrico Blanzieri & Chao Su, 2013. "Link Clustering with Extended Link Similarity and EQ Evaluation Division," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-18, June.
    14. Zhang, Hongli & Gao, Yang & Zhang, Yue, 2018. "Overlapping communities from dense disjoint and high total degree clusters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 286-298.
    15. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Overlapping community detection using neighborhood ratio matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 510-521.
    16. Sun, Peng Gang & Wu, Xunlian & Quan, Yining & Miao, Qiguang, 2022. "Influence percolation method for overlapping community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    17. Carlo Piccardi, 2011. "Finding and Testing Network Communities by Lumped Markov Chains," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-13, November.
    18. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2015. "Epidemic spreading on complex networks with overlapping and non-overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 171-182.
    19. Supreet Mandala & Soundar Kumara & Kalyan Chatterjee, 2014. "A Game-Theoretic Approach to Graph Clustering," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 629-643, August.
    20. Yi-Shan Sung & Dashun Wang & Soundar Kumara, 2018. "Uncovering the effect of dominant attributes on community topology: A case of facebook networks," Information Systems Frontiers, Springer, vol. 20(5), pages 1041-1052, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:419:y:2015:i:c:p:408-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.