IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i9p1287-d1381847.html
   My bibliography  Save this article

A Weighted Skew-Logistic Distribution with Applications to Environmental Data

Author

Listed:
  • Isaac Cortés

    (Facultad de Ciencias Básicas, Universidad Arturo Prat, Avenida Arturo Prat 2120, Iquique 1110939, Chile
    These authors contributed equally to this work.)

  • Jimmy Reyes

    (Departamento de Estadística y Ciencia de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
    These authors contributed equally to this work.)

  • Yuri A. Iriarte

    (Departamento de Estadística y Ciencia de Datos, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta 1240000, Chile
    These authors contributed equally to this work.)

Abstract

Skewness and bimodality properties are frequently observed when analyzing environmental data such as wind speeds, precipitation levels, and ambient temperatures. As an alternative to modeling data exhibiting these properties, we propose a flexible extension of the skew-logistic distribution. The proposal corresponds to a weighted version of the skewed logistic distribution, defined by a parametric weight function that allows shapes with up to three modes for the resulting density. Parameter estimation via the maximum likelihood approach is discussed. Simulation experiments are carried out to evaluate the performance of the estimators. Applications to environmental data illustrating the utility of the proposal are presented.

Suggested Citation

  • Isaac Cortés & Jimmy Reyes & Yuri A. Iriarte, 2024. "A Weighted Skew-Logistic Distribution with Applications to Environmental Data," Mathematics, MDPI, vol. 12(9), pages 1-21, April.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:9:p:1287-:d:1381847
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/9/1287/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/9/1287/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Abubakar Suleiman & Hanita Daud & Narinderjit Singh Sawaran Singh & Mahmod Othman & Aliyu Ismail Ishaq & Rajalingam Sokkalingam, 2023. "A Novel Odd Beta Prime-Logistic Distribution: Desirable Mathematical Properties and Applications to Engineering and Environmental Data," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    2. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    3. Saralees Nadarajah, 2009. "The skew logistic distribution," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(2), pages 187-203, June.
    4. Jose Ameijeiras-Alonso & Rosa M. Crujeiras & Alberto Rodríguez-Casal, 2019. "Mode testing, critical bandwidth and excess mass," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 900-919, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioana Gutu & Daniela Tatiana Agheorghiesei & Alexandru Tugui, 2023. "Assessment of a Workforce Sustainability Tool through Leadership and Digitalization," IJERPH, MDPI, vol. 20(2), pages 1-30, January.
    2. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    3. Isaac E. Cortés & Osvaldo Venegas & Héctor W. Gómez, 2022. "A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution: Properties, Simulation and Applications," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    4. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    5. Byrd, T. A. & Marshall, T. E., 1997. "Relating information technology investment to organizational performance: a causal model analysis," Omega, Elsevier, vol. 25(1), pages 43-56, February.
    6. Herbert Hoijtink & Meinte Vollema, 2003. "Contemporary Extensions of the Rasch Model," Quality & Quantity: International Journal of Methodology, Springer, vol. 37(3), pages 263-276, August.
    7. Jaewoong Yun, 2023. "Strategies for Improving the Sustainability of Fare-Free Policy for the Elderly through Preferences by Travel Modes," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    8. Malerba, Martino E. & Connolly, Sean R. & Heimann, Kirsten, 2015. "An experimentally validated nitrate–ammonium–phytoplankton model including effects of starvation length and ammonium inhibition on nitrate uptake," Ecological Modelling, Elsevier, vol. 317(C), pages 30-40.
    9. Aline Riboli Marasca & Maurício Scopel Hoffmann & Anelise Reis Gaya & Denise Ruschel Bandeira, 2021. "Subjective Well-Being and Psychopathology Symptoms: Mental Health Profiles and their Relations with Academic Achievement in Brazilian Children," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 14(3), pages 1121-1137, June.
    10. Friederike Paetz, 2016. "Persönlichkeitsmerkmale als Segmentierungsvariablen: Eine empirische Studie [Personality traits for market segmentation: An empirical study]," Schmalenbach Journal of Business Research, Springer, vol. 68(3), pages 279-306, August.
    11. Emre Demirkaya & Yang Feng & Pallavi Basu & Jinchi Lv, 2022. "Large-scale model selection in misspecified generalized linear models [Information theory and an extension of the maximum likelihood principle]," Biometrika, Biometrika Trust, vol. 109(1), pages 123-136.
    12. Daniel Y Choi & Thomas W Wittig & Bryan M Kluever, 2020. "An evaluation of bird and bat mortality at wind turbines in the Northeastern United States," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-22, August.
    13. Rosbergen, Edward & Wedel, Michel & Pieters, Rik, 1997. "Analyzing visual attention tot repeated print advertising using scanpath theory," Research Report 97B32, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    14. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
    16. Nalan Basturk & Richard Paap & Dick van Dijk, 2008. "Structural Differences in Economic Growth," Tinbergen Institute Discussion Papers 08-085/4, Tinbergen Institute.
    17. Golob, Thomas F. & Regan, A C, 2002. "Trucking Industry Preferences for Driver Traveler Information Using Wireless Internet-enabled Devices," University of California Transportation Center, Working Papers qt40q8h6sf, University of California Transportation Center.
    18. Golob, Thomas F. & Regan, A C, 2003. "Traffic Congestion and Trucking Managers' Use of Automated Routing and Scheduling," University of California Transportation Center, Working Papers qt74z234n4, University of California Transportation Center.
    19. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    20. Bijmolt, T.H.A. & Wedel, M., 1996. "A Monte Carlo Evaluation of Maximum Likelihood Multidimensional Scaling Methods," Other publications TiSEM f72cc9d8-f370-43aa-a224-4, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:9:p:1287-:d:1381847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.