IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i7p995-d1364862.html
   My bibliography  Save this article

Variational Bayesian Variable Selection for High-Dimensional Hidden Markov Models

Author

Listed:
  • Yao Zhai

    (Key Lab of Statistical Modeling and Data Analysis of Yunnan Province, Department of Statistics, Yunnan University, Kunming 650091, China
    These authors contributed equally to this work.)

  • Wei Liu

    (Key Lab of Statistical Modeling and Data Analysis of Yunnan Province, Department of Statistics, Yunnan University, Kunming 650091, China
    These authors contributed equally to this work.)

  • Yunzhi Jin

    (Key Lab of Statistical Modeling and Data Analysis of Yunnan Province, Department of Statistics, Yunnan University, Kunming 650091, China)

  • Yanqing Zhang

    (Key Lab of Statistical Modeling and Data Analysis of Yunnan Province, Department of Statistics, Yunnan University, Kunming 650091, China)

Abstract

The Hidden Markov Model (HMM) is a crucial probabilistic modeling technique for sequence data processing and statistical learning that has been extensively utilized in various engineering applications. Traditionally, the EM algorithm is employed to fit HMMs, but currently, academics and professionals exhibit augmenting enthusiasm in Bayesian inference. In the Bayesian context, Markov Chain Monte Carlo (MCMC) methods are commonly used for inferring HMMs, but they can be computationally demanding for high-dimensional covariate data. As a rapid substitute, variational approximation has become a noteworthy and effective approximate inference approach, particularly in recent years, for representation learning in deep generative models. However, there has been limited exploration of variational inference for HMMs with high-dimensional covariates. In this article, we develop a mean-field Variational Bayesian method with the double-exponential shrinkage prior to fit high-dimensional HMMs whose hidden states are of discrete types. The proposed method offers the advantage of fitting the model and investigating specific factors that impact the response variable changes simultaneously. In addition, since the proposed method is based on the Variational Bayesian framework, the proposed method can avoid huge memory and intensive computational cost typical of traditional Bayesian methods. In the simulation studies, we demonstrate that the proposed method can quickly and accurately estimate the posterior distributions of the parameters with good performance. We analyzed the Beijing Multi-Site Air-Quality data and predicted the PM2.5 values via the fitted HMMs.

Suggested Citation

  • Yao Zhai & Wei Liu & Yunzhi Jin & Yanqing Zhang, 2024. "Variational Bayesian Variable Selection for High-Dimensional Hidden Markov Models," Mathematics, MDPI, vol. 12(7), pages 1-26, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:995-:d:1364862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/7/995/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/7/995/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    2. Yixin Wang & David M. Blei, 2019. "Frequentist Consistency of Variational Bayes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1147-1161, July.
    3. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    2. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    3. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    4. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    5. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
    6. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-07, Economic Statistics Centre of Excellence (ESCoE).
    7. Jenni Niku & Francis K. C. Hui & Sara Taskinen & David I. Warton, 2021. "Analyzing environmental‐trait interactions in ecological communities with fourth‐corner latent variable models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    8. Rajiv Sambasivan & Sourish Das & Sujit K. Sahu, 2020. "A Bayesian perspective of statistical machine learning for big data," Computational Statistics, Springer, vol. 35(3), pages 893-930, September.
    9. Se Yoon Lee & Bani K. Mallick, 2022. "Bayesian Hierarchical Modeling: Application Towards Production Results in the Eagle Ford Shale of South Texas," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 1-43, May.
    10. Zhang, Chun-Xia & Xu, Shuang & Zhang, Jiang-She, 2019. "A novel variational Bayesian method for variable selection in logistic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 1-19.
    11. Kaito Shimamura & Shuichi Kawano, 2021. "Bayesian sparse convex clustering via global-local shrinkage priors," Computational Statistics, Springer, vol. 36(4), pages 2671-2699, December.
    12. Mauro Bernardi & Daniele Bianchi & Nicolas Bianco, 2022. "Variational inference for large Bayesian vector autoregressions," Papers 2202.12644, arXiv.org, revised Jun 2023.
    13. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    14. Anne Musson & Damien Rousselière, 2020. "Exploring the effect of crisis on cooperatives: a Bayesian performance analysis of French craftsmen cooperatives," Applied Economics, Taylor & Francis Journals, vol. 52(25), pages 2657-2678, May.
    15. Prüser, Jan, 2017. "Forecasting US inflation using Markov dimension switching," Ruhr Economic Papers 710, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    16. Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
    17. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    18. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    19. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
    20. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:7:p:995-:d:1364862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.