IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i5p762-d1350819.html
   My bibliography  Save this article

Delay-Embedding Spatio-Temporal Dynamic Mode Decomposition

Author

Listed:
  • Gyurhan Nedzhibov

    (Faculty of Mathematics and Informatics, Konstantin Preslavsky University of Shumen, 9700 Shumen, Bulgaria)

Abstract

Spatio-temporal dynamic mode decomposition (STDMD) is an extension of dynamic mode decomposition (DMD) designed to handle spatio-temporal datasets. It extends the framework so that it can analyze data that have both spatial and temporal variations. This facilitates the extraction of spatial structures along with their temporal evolution. The STDMD method extracts temporal and spatial development information simultaneously, including wavenumber, frequencies, and growth rates, which are essential in complex dynamic systems. We provide a comprehensive mathematical framework for sequential and parallel STDMD approaches. To increase the range of applications of the presented techniques, we also introduce a generalization of delay coordinates. The extension, labeled delay-embedding STDMD allows the use of delayed data, which can be both time-delayed and space-delayed. An explicit expression of the presented algorithms in matrix form is also provided, making theoretical analysis easier and providing a solid foundation for further research and development. The novel approach is demonstrated using some illustrative model dynamics.

Suggested Citation

  • Gyurhan Nedzhibov, 2024. "Delay-Embedding Spatio-Temporal Dynamic Mode Decomposition," Mathematics, MDPI, vol. 12(5), pages 1-18, March.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:762-:d:1350819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/5/762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/5/762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven L. Brunton & Bingni W. Brunton & Joshua L. Proctor & Eurika Kaiser & J. Nathan Kutz, 2017. "Chaos as an intermittently forced linear system," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    2. Jordan Mann & J. Nathan Kutz, 2016. "Dynamic mode decomposition for financial trading strategies," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1643-1655, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lampartová, Alžběta & Lampart, Marek, 2024. "Exploring diverse trajectory patterns in nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Avalos, Edgar & Datta, Amitava & Rosato, Anthony D. & Blackmore, Denis & Sen, Surajit, 2020. "Dynamics in a confined mass–spring chain with 1∕r repulsive potential: Strongly nonlinear regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    3. Jing Lu & Jingjun Jiang & Yidan Bai, 2024. "Deep Embedding Koopman Neural Operator-Based Nonlinear Flight Training Trajectory Prediction Approach," Mathematics, MDPI, vol. 12(14), pages 1-20, July.
    4. Ali, Naseem & Cal, Raúl Bayoán, 2019. "Scale evolution, intermittency and fluctuation relations in the near-wake of a wind turbine array," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 215-229.
    5. Riccardo Colantuono & Riccardo Colantuono & Massimiliano Mazzanti & Michele Pinelli, 2023. "Aviation and the EU ETS: an overview and a data-driven approach for carbon price prediction," SEEDS Working Papers 0123, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Feb 2023.
    6. Elmore, Clay T. & Dowling, Alexander W., 2021. "Learning spatiotemporal dynamics in wholesale energy markets with dynamic mode decomposition," Energy, Elsevier, vol. 232(C).
    7. Rubén Ibáñez & Emmanuelle Abisset-Chavanne & Amine Ammar & David González & Elías Cueto & Antonio Huerta & Jean Louis Duval & Francisco Chinesta, 2018. "A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition," Complexity, Hindawi, vol. 2018, pages 1-11, November.
    8. García-Rojas, Blanca E. & Ramirez-Dámaso, Gabriel & Caballero, Francisco & Femat, Ricardo, 2022. "Crisis-induced intermittency in Mexican dam flows," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Jinxiang Xi & Weizhong Zhao, 2019. "Correlating exhaled aerosol images to small airway obstructive diseases: A study with dynamic mode decomposition and machine learning," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-22, January.
    10. Soledad Le Clainche & José M. Vega, 2018. "Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods," Complexity, Hindawi, vol. 2018, pages 1-21, December.
    11. Zhang, Wenbo & Gu, Wei, 2024. "Machine learning for a class of partial differential equations with multi-delays based on numerical Gaussian processes," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    12. Chau, Thi Tuyet Trang & Ailliot, Pierre & Monbet, Valérie, 2021. "An algorithm for non-parametric estimation in state–space models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    13. Kanbur, Baris Burak & Kumtepeli, Volkan & Duan, Fei, 2020. "Thermal performance prediction of the battery surface via dynamic mode decomposition," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:762-:d:1350819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.