IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i14p2162-d1432373.html
   My bibliography  Save this article

Deep Embedding Koopman Neural Operator-Based Nonlinear Flight Training Trajectory Prediction Approach

Author

Listed:
  • Jing Lu

    (College of Computer Science, Civil Aviation Flight University of China, Nanchang Road, Guanghan 618307, China)

  • Jingjun Jiang

    (College of Computer Science, Civil Aviation Flight University of China, Nanchang Road, Guanghan 618307, China)

  • Yidan Bai

    (College of Computer Science, Civil Aviation Flight University of China, Nanchang Road, Guanghan 618307, China)

Abstract

Accurate flight training trajectory prediction is a key task in automatic flight maneuver evaluation and flight operations quality assurance (FOQA), which is crucial for pilot training and aviation safety management. The task is extremely challenging due to the nonlinear chaos of trajectories, the unconstrained airspace maps, and the randomization of driving patterns. In this work, a deep learning model based on data-driven modern koopman operator theory and dynamical system identification is proposed. The model does not require the manual selection of dictionaries and can automatically generate augmentation functions to achieve nonlinear trajectory space mapping. The model combines stacked neural networks to create a scalable depth approximator for approximating the finite-dimensional Koopman operator. In addition, the model uses finite-dimensional operator evolution to achieve end-to-end adaptive prediction. In particular, the model can gain some physical interpretability through operator visualization and generative dictionary functions, which can be used for downstream pattern recognition and anomaly detection tasks. Experiments show that the model performs well, particularly on flight training trajectory datasets.

Suggested Citation

  • Jing Lu & Jingjun Jiang & Yidan Bai, 2024. "Deep Embedding Koopman Neural Operator-Based Nonlinear Flight Training Trajectory Prediction Approach," Mathematics, MDPI, vol. 12(14), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2162-:d:1432373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/14/2162/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/14/2162/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven L. Brunton & Bingni W. Brunton & Joshua L. Proctor & Eurika Kaiser & J. Nathan Kutz, 2017. "Chaos as an intermittently forced linear system," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lampartová, Alžběta & Lampart, Marek, 2024. "Exploring diverse trajectory patterns in nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Ali, Naseem & Cal, Raúl Bayoán, 2019. "Scale evolution, intermittency and fluctuation relations in the near-wake of a wind turbine array," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 215-229.
    3. Gyurhan Nedzhibov, 2024. "Delay-Embedding Spatio-Temporal Dynamic Mode Decomposition," Mathematics, MDPI, vol. 12(5), pages 1-18, March.
    4. Riccardo Colantuono & Riccardo Colantuono & Massimiliano Mazzanti & Michele Pinelli, 2023. "Aviation and the EU ETS: an overview and a data-driven approach for carbon price prediction," SEEDS Working Papers 0123, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Feb 2023.
    5. García-Rojas, Blanca E. & Ramirez-Dámaso, Gabriel & Caballero, Francisco & Femat, Ricardo, 2022. "Crisis-induced intermittency in Mexican dam flows," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    6. Soledad Le Clainche & José M. Vega, 2018. "Analyzing Nonlinear Dynamics via Data-Driven Dynamic Mode Decomposition-Like Methods," Complexity, Hindawi, vol. 2018, pages 1-21, December.
    7. Zhang, Wenbo & Gu, Wei, 2024. "Machine learning for a class of partial differential equations with multi-delays based on numerical Gaussian processes," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    8. Chau, Thi Tuyet Trang & Ailliot, Pierre & Monbet, Valérie, 2021. "An algorithm for non-parametric estimation in state–space models," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    9. Kanbur, Baris Burak & Kumtepeli, Volkan & Duan, Fei, 2020. "Thermal performance prediction of the battery surface via dynamic mode decomposition," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2162-:d:1432373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.