IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1583-d1106733.html
   My bibliography  Save this article

A New Probabilistic Approach: Estimation and Monte Carlo Simulation with Applications to Time-to-Event Data

Author

Listed:
  • Huda M. Alshanbari

    (Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Zubair Ahmad

    (Department of Statistics, Quaid-i-Azam University, Islamabad 44000, Pakistan)

  • Hazem Al-Mofleh

    (Department of Mathematics, Tafila Technical University, Tafila 66110, Jordan)

  • Clement Boateng Ampadu

    (Independent Researcher, 31 Carrolton Road, Boston, MA 02132, USA)

  • Saima K. Khosa

    (Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada)

Abstract

In this paper, we propose a useful method without adding any extra parameters to obtain new probability distributions. The proposed family is a combination of the two existing families of distributions and is called a weighted sine- G family. A two-parameter special member of the weighted sine- G family, using the Weibull distribution as a baseline model, is considered and investigated in detail. Some distributional properties of the weighted sine- G family are derived. Different estimation methods are considered to estimate the parameters of the special model of the weighted sine- G family. Furthermore, simulation studies based on these different methods are also provided. Finally, the applicability and usefulness of the weighted sine- G family are demonstrated by analyzing two data sets taken from the engineering sector.

Suggested Citation

  • Huda M. Alshanbari & Zubair Ahmad & Hazem Al-Mofleh & Clement Boateng Ampadu & Saima K. Khosa, 2023. "A New Probabilistic Approach: Estimation and Monte Carlo Simulation with Applications to Time-to-Event Data," Mathematics, MDPI, vol. 11(7), pages 1-30, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1583-:d:1106733
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhuang, Liangliang & Xu, Ancha & Wang, Xiao-Lin, 2023. "A prognostic driven predictive maintenance framework based on Bayesian deep learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Luo, Chunling & Shen, Lijuan & Xu, Ancha, 2022. "Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    4. Hesham Reyad & Mustafa Ç. Korkmaz & Ahmed Z. Afify & G. G. Hamedani & Soha Othman, 2021. "The Fréchet Topp Leone-G Family of Distributions: Properties, Characterizations and Applications," Annals of Data Science, Springer, vol. 8(2), pages 345-366, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Germán Badía & María D. Berrade, 2023. "Special Issue “Probability Theory and Stochastic Modeling with Applications”," Mathematics, MDPI, vol. 11(14), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    2. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    3. Raydonal Ospina & João A. M. Gondim & Víctor Leiva & Cecilia Castro, 2023. "An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil," Mathematics, MDPI, vol. 11(14), pages 1-18, July.
    4. Haiping Ren & Xue Hu, 2023. "Bayesian Estimations of Shannon Entropy and Rényi Entropy of Inverse Weibull Distribution," Mathematics, MDPI, vol. 11(11), pages 1-16, May.
    5. Essam A. Ahmed & Mahmoud El-Morshedy & Laila A. Al-Essa & Mohamed S. Eliwa, 2023. "Statistical Inference on the Entropy Measures of Gamma Distribution under Progressive Censoring: EM and MCMC Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-30, May.
    6. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    7. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    8. Ramadan A. ZeinEldin & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy, 2019. "Statistical Properties and Different Methods of Estimation for Type I Half Logistic Inverted Kumaraswamy Distribution," Mathematics, MDPI, vol. 7(10), pages 1-24, October.
    9. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    10. Diyang, Liu & Shibin, Gao & Xiaoguang, Wei & Jiaming, Luo & Jian, Shi, 2024. "Impactability and susceptibility assessment based on D-S evidence theory for analyzing the risk of fault propagation among catenary components," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    11. Sajid Hussain & Mahmood Ul Hassan & Muhammad Sajid Rashid & Rashid Ahmed, 2023. "The Exponentiated Power Alpha Index Generalized Family of Distributions: Properties and Applications," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    12. Abdulhakim A. Al-Babtain & Ibrahim Elbatal & Christophe Chesneau & Farrukh Jamal, 2020. "Box-Cox Gamma-G Family of Distributions: Theory and Applications," Mathematics, MDPI, vol. 8(10), pages 1-24, October.
    13. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    14. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    15. Mohamed S. Eliwa & Muhammad H. Tahir & Muhammad A. Hussain & Bader Almohaimeed & Afrah Al-Bossly & Mahmoud El-Morshedy, 2023. "Univariate Probability-G Classes for Scattered Samples under Different Forms of Hazard: Continuous and Discrete Version with Their Inferences Tests," Mathematics, MDPI, vol. 11(13), pages 1-24, June.
    16. Hesham Reyad & Mustafa Ç. Korkmaz & Ahmed Z. Afify & G. G. Hamedani & Soha Othman, 2021. "The Fréchet Topp Leone-G Family of Distributions: Properties, Characterizations and Applications," Annals of Data Science, Springer, vol. 8(2), pages 345-366, June.
    17. Ahmad Alzaghal & Duha Hamed, 2019. "New Families of Generalized Lomax Distributions: Properties and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-51, November.
    18. Rana Muhammad Usman & Maryam Ilyas, 2024. "Power Burr X-T family of distributions: properties, estimation methods and real-life applications," Computational Statistics, Springer, vol. 39(6), pages 2949-2974, September.
    19. Nicollas S. S. da Costa & Maria do Carmo Soares de Lima & Gauss Moutinho Cordeiro, 2024. "A Bimodal Exponential Regression Model for Analyzing Dengue Fever Case Rates in the Federal District of Brazil," Mathematics, MDPI, vol. 12(21), pages 1-20, October.
    20. Indranil Ghosh & Saralees Nadarajah, 2017. "On some further properties and application of Weibull-R family of distributions," Papers 1711.00171, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1583-:d:1106733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.