IDEAS home Printed from https://ideas.repec.org/a/hin/jnijde/1015634.html
   My bibliography  Save this article

Piecewise Approximate Analytical Solutions of High-Order Singular Perturbation Problems with a Discontinuous Source Term

Author

Listed:
  • Essam R. El-Zahar

Abstract

A reliable algorithm is presented to develop piecewise approximate analytical solutions of third- and fourth-order convection diffusion singular perturbation problems with a discontinuous source term. The algorithm is based on an asymptotic expansion approximation and Differential Transform Method (DTM). First, the original problem is transformed into a weakly coupled system of ODEs and a zero-order asymptotic expansion of the solution is constructed. Then a piecewise smooth solution of the terminal value reduced system is obtained by using DTM and imposing the continuity and smoothness conditions. The error estimate of the method is presented. The results show that the method is a reliable and convenient asymptotic semianalytical numerical method for treating high-order singular perturbation problems with a discontinuous source term.

Suggested Citation

  • Essam R. El-Zahar, 2016. "Piecewise Approximate Analytical Solutions of High-Order Singular Perturbation Problems with a Discontinuous Source Term," International Journal of Differential Equations, Hindawi, vol. 2016, pages 1-12, November.
  • Handle: RePEc:hin:jnijde:1015634
    DOI: 10.1155/2016/1015634
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJDE/2016/1015634.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJDE/2016/1015634.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/1015634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Essam R. El-Zahar & Ghaliah F. Al-Boqami & Haifa S. Al-Juaydi, 2024. "Approximate Analytical Solutions for Strongly Coupled Systems of Singularly Perturbed Convection–Diffusion Problems," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    2. Essam R. El-Zahar & José Tenreiro Machado & Abdelhalim Ebaid, 2019. "A New Generalized Taylor-Like Explicit Method for Stiff Ordinary Differential Equations," Mathematics, MDPI, vol. 7(12), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnijde:1015634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.