IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i24p3968-d1545924.html
   My bibliography  Save this article

Concurrency Conflict Modeling for Asynchronous Processing in Blockchain-Based Transactive Energy Systems

Author

Listed:
  • Fabiola Marcos Solis

    (Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonanzintla 72840, Mexico)

  • Saul Eduardo Pomares Hernandez

    (Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonanzintla 72840, Mexico)

  • José Roberto Pérez Cruz

    (Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonanzintla 72840, Mexico)

  • Lil María Rodríguez Henríquez

    (Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonanzintla 72840, Mexico
    Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Alcaldía Benito Juárez, Mexico City 03940, Mexico)

Abstract

Blockchain is widely adopted for decentralized transaction management in systems like Transactive Energy (TE). Unfortunately, conventional blockchains with sequential models and restrictive participation rules do not meet energy sector requirements. High volumes of asynchronous-generated transactions impose severe concurrency challenges for blockchain. These difficulties worsen when participants process blocks concurrently, prompting branching and conflicting versions. This issue is often addressed by discarding blocks and reverting transactions, which is detrimental to TE systems. Preserving validated transactions is crucial to avoid disrupting physical asset exchanges and wasting computational resources. To address these challenges, this paper proposes a new model for identifying transaction discrepancies in conflict blocks while maintaining validated transactions. The model enables collaborative block building by integrating multiple blockchain views, eliminating competition, leader selection, and transaction reversals or discards. Block and transaction generation conflicts are addressed by establishing logical-temporal dependencies and leveraging pairwise interactions to detect them toward accelerating consensus. Hence, the model promotes concurrency to enhance transaction processing and avoid resource waste. Simulations indicate traditional models limit network potential to below 5% as blockchain height increases because of single contributions. Conversely, the proposed model uses multiple nodes’ views to achieve up to 90% of the network’s processing capacity.

Suggested Citation

  • Fabiola Marcos Solis & Saul Eduardo Pomares Hernandez & José Roberto Pérez Cruz & Lil María Rodríguez Henríquez, 2024. "Concurrency Conflict Modeling for Asynchronous Processing in Blockchain-Based Transactive Energy Systems," Mathematics, MDPI, vol. 12(24), pages 1-23, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3968-:d:1545924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/24/3968/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/24/3968/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    2. Soto, Esteban A. & Bosman, Lisa B. & Wollega, Ebisa & Leon-Salas, Walter D., 2021. "Peer-to-peer energy trading: A review of the literature," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cortade, Thomas & Poudou, Jean-Christophe, 2022. "Peer-to-peer energy platforms: Incentives for prosuming," Energy Economics, Elsevier, vol. 109(C).
    2. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    4. Zheng, Boshen & Wei, Wei & Chen, Yue & Wu, Qiuwei & Mei, Shengwei, 2022. "A peer-to-peer energy trading market embedded with residential shared energy storage units," Applied Energy, Elsevier, vol. 308(C).
    5. Umer, Khalid & Huang, Qi & Khorasany, Mohsen & Afzal, Muhammad & Amin, Waqas, 2021. "A novel communication efficient peer-to-peer energy trading scheme for enhanced privacy in microgrids," Applied Energy, Elsevier, vol. 296(C).
    6. Barry Hayes & Dorota Kamrowska-Zaluska & Aleksandar Petrovski & Cristina Jiménez-Pulido, 2021. "State of the Art in Open Platforms for Collaborative Urban Design and Sharing of Resources in Districts and Cities," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    7. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    8. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    9. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    10. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    11. Ma, Li & Wang, Lingfeng & Liu, Zhaoxi, 2021. "Multi-level trading community formation and hybrid trading network construction in local energy market," Applied Energy, Elsevier, vol. 285(C).
    12. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    13. Maarten Evens & Patricia Ercoli & Alessia Arteconi, 2023. "Blockchain-Enabled Microgrids: Toward Peer-to-Peer Energy Trading and Flexible Demand Management," Energies, MDPI, vol. 16(18), pages 1-24, September.
    14. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    15. Maarja Meitern, 2022. "Does Access to Regulative Exemption Reduce Barriers for Energy Communities? A Dutch Case Study," Sustainability, MDPI, vol. 14(9), pages 1-13, May.
    16. Sara Khan & Uzma Amin & Ahmed Abu-Siada, 2024. "P2P Energy Trading of EVs Using Blockchain Technology in Centralized and Decentralized Networks: A Review," Energies, MDPI, vol. 17(9), pages 1-17, April.
    17. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    18. Nieta, Agustín A. Sánchez de la & Ilieva, Iliana & Gibescu, Madeleine & Bremdal, Bernt & Simonsen, Stig & Gramme, Eivind, 2021. "Optimal midterm peak shaving cost in an electricity management system using behind customers’ smart meter configuration," Applied Energy, Elsevier, vol. 283(C).
    19. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    20. Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3968-:d:1545924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.