IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i24p3954-d1545050.html
   My bibliography  Save this article

Numerical Study of the Thermal Energy Storage Container Shape Impact on the NePCM Melting Process

Author

Listed:
  • Obai Younis

    (Department of Mechanical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia)

  • Naef A. A. Qasem

    (Department of Aerospace Engineering and Interdisciplinary Research Center for Aviation and Space Exploration, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Aissa Abderrahmane

    (Laboratory of Quantum Physics of Matter and Modeling Mathematics (LPQ3M), University of Mustapha Stambouli of Mascara, Mascara 29000, Algeria)

  • Abdeldjalil Belazreg

    (Laboratory of Quantum Physics of Matter and Modeling Mathematics (LPQ3M), University of Mustapha Stambouli of Mascara, Mascara 29000, Algeria)

Abstract

Recently, thermal energy storage has emerged as one of the alternative solutions to increase energy efficiency. The geometry of a thermal energy storage container holds a significant role in increasing the heat transmission rates in the container. In this article, we examined the influence of the inner and outer tube shapes of a shell and tube LHTES on the thermal activity within the system. The gap between the inner and outer tube is loaded with nano-enhanced phase change material (NePCM); hot fluid is passed through the inner tube while the outer tube is insulated. COMSOL commercial software (version 6.2) was used to numerically simulate the NePCM melting process. Mainly, six different geometries were investigated with inner or outer tubes with trefoil, cinquefoil, and heptafoil shapes. The influences of nanoparticles volumetric fraction (ϕ = 0–8%) were also discussed. The findings are displayed and discussed in terms of the average Nusselt number, the average liquid fraction, the total energy generation, and the average temperature. The findings showed that the melting process is highly affected by the shape of the inner tube and ϕ, while the outer tube shape impact is less important. It was noticed that employing an inner tube with a trefoil improved the melting process by more than 25% while increasing the ϕ from 0 to 8% resulted in reducing the melting time by up to 20%.

Suggested Citation

  • Obai Younis & Naef A. A. Qasem & Aissa Abderrahmane & Abdeldjalil Belazreg, 2024. "Numerical Study of the Thermal Energy Storage Container Shape Impact on the NePCM Melting Process," Mathematics, MDPI, vol. 12(24), pages 1-20, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3954-:d:1545050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/24/3954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/24/3954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Zhipei & Jiang, Shuo & Sun, Zhigao & Li, Jun, 2024. "Numerical simulation of fin arrangements on the melting process of PCM in a rectangular unit," Renewable Energy, Elsevier, vol. 220(C).
    2. Kalaiselvam, S. & Parameshwaran, R. & Harikrishnan, S., 2012. "Analytical and experimental investigations of nanoparticles embedded phase change materials for cooling application in modern buildings," Renewable Energy, Elsevier, vol. 39(1), pages 375-387.
    3. Qin, Zhen & Ji, Chenzhen & Low, Zheng Hua & Tong, Wei & Wu, Chenlong & Duan, Fei, 2022. "Geometry effect of phase change material container on waste heat recovery enhancement," Applied Energy, Elsevier, vol. 327(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yanlong & Lu, Jie & Yuan, Yuan & Wang, Fuqiang & Tan, Heping, 2020. "Effect of radiation on the effective thermal conductivity of encapsulated capsules containing high-temperature phase change materials," Renewable Energy, Elsevier, vol. 160(C), pages 676-685.
    2. Lum, L.Y.X. & Wong, T.N. & Ho, J.Y. & Leong, K.C., 2024. "Three-dimensional topology-optimized structures for enhanced low-temperature thermal energy storage," Applied Energy, Elsevier, vol. 362(C).
    3. Anisur, M.R. & Mahfuz, M.H. & Kibria, M.A. & Saidur, R. & Metselaar, I.H.S.C. & Mahlia, T.M.I., 2013. "Curbing global warming with phase change materials for energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 23-30.
    4. Parameshwaran, R. & Kalaiselvam, S., 2013. "Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings," Energy, Elsevier, vol. 59(C), pages 194-214.
    5. Parameshwaran, R. & Deepak, K. & Saravanan, R. & Kalaiselvam, S., 2014. "Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 115(C), pages 320-330.
    6. Wong-Pinto, Liey-Si & Milian, Yanio & Ushak, Svetlana, 2020. "Progress on use of nanoparticles in salt hydrates as phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    7. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    8. Ma, Zhenjun & Lin, Wenye & Sohel, M. Imroz, 2016. "Nano-enhanced phase change materials for improved building performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1256-1268.
    9. Soni, Vikram & Kumar, Arvind & Jain, V.K., 2018. "Performance evaluation of nano-enhanced phase change materials during discharge stage in waste heat recovery," Renewable Energy, Elsevier, vol. 127(C), pages 587-601.
    10. Zhai, X.Q. & Wang, X.L. & Wang, T. & Wang, R.Z., 2013. "A review on phase change cold storage in air-conditioning system: Materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 108-120.
    11. Chen, Wei & Chen, Wei, 2020. "Analysis of heat transfer and flow in the solar chimney with the sieve-plate thermal storage beds packed with phase change capsules," Renewable Energy, Elsevier, vol. 157(C), pages 491-501.
    12. Peng, Benli & Huang, Guanghan & Wang, Pengtao & Li, Wenming & Chang, Wei & Ma, Jiaxuan & Li, Chen, 2019. "Effects of thermal conductivity and density on phase change materials-based thermal energy storage systems," Energy, Elsevier, vol. 172(C), pages 580-591.
    13. Zheng, Zhang-Jing & Yang, Chao & Xu, Yang & Cai, Xiao, 2021. "Effect of metal foam with two-dimensional porosity gradient on melting behavior in a rectangular cavity," Renewable Energy, Elsevier, vol. 172(C), pages 802-815.
    14. Sharma, S. & Micheli, L. & Chang, W. & Tahir, A.A. & Reddy, K.S. & Mallick, T.K., 2017. "Nano-enhanced Phase Change Material for thermal management of BICPV," Applied Energy, Elsevier, vol. 208(C), pages 719-733.
    15. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    16. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2020. "Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials," Energies, MDPI, vol. 13(19), pages 1-30, October.
    17. Pacheco-Torgal, F., 2017. "High tech startup creation for energy efficient built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 618-629.
    18. Parameshwaran, R. & Kalaiselvam, S. & Harikrishnan, S. & Elayaperumal, A., 2012. "Sustainable thermal energy storage technologies for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2394-2433.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3954-:d:1545050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.