IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i24p3915-d1541950.html
   My bibliography  Save this article

Advanced Trans-EEGNet Deep Learning Model for Hypoxic-Ischemic Encephalopathy Severity Grading

Author

Listed:
  • Dong-Her Shih

    (Department of Information Management, National Yunlin University of Science and Technology, Douliu 64002, Taiwan)

  • Feng-I Chung

    (Center for General Education, National Chung Cheng University, Chiayi 621301, Taiwan)

  • Ting-Wei Wu

    (Department of Information Management, National Yunlin University of Science and Technology, Douliu 64002, Taiwan)

  • Shuo-Yu Huang

    (Department of Information Management, National Yunlin University of Science and Technology, Douliu 64002, Taiwan)

  • Ming-Hung Shih

    (Department of Electrical and Computer Engineering, Iowa State University, 2520 Osborn Drive, Ames, IA 50011, USA)

Abstract

Hypoxic-ischemic encephalopathy (HIE) is a brain injury condition that poses a significant risk to newborns, potentially causing varying degrees of damage to the central nervous system. Its clinical manifestations include respiratory distress, cardiac dysfunction, hypotension, muscle weakness, seizures, and coma. As HIE represents a progressive brain injury, early identification of the extent of the damage and the implementation of appropriate treatment are crucial for reducing mortality and improving outcomes. HIE patients may face long-term complications such as cerebral palsy, epilepsy, vision loss, and developmental delays. Therefore, prompt identification and treatment of hypoxic-ischemic symptoms can help reduce the risk of severe sequelae in patients. Currently, hypothermia therapy is one of the most effective treatments for HIE patients. However, not all newborns with HIE are suitable for this therapy, making rapid and accurate assessment of the extent of brain injury critical for treatment. Among HIE patients, hypothermia therapy has shown better efficacy in those diagnosed with moderate to severe HIE within 6 h of birth, establishing this time frame as the golden period for treatment. During this golden period, an accurate assessment of HIE severity is essential for formulating appropriate treatment strategies and predicting long-term outcomes for the affected infants. This study proposes a method for addressing data imbalance and noise interference through data preprocessing techniques, including filtering and SMOTE. It then employs EEGNet, a deep learning model specifically designed for EEG classification, combined with a Transformer model featuring an attention mechanism that excels at capturing long-term sequential features to construct the Trans-EEGNet model. This model outperforms previous methods in computation time and feature extraction, enabling rapid classification and assessment of HIE severity in newborns.

Suggested Citation

  • Dong-Her Shih & Feng-I Chung & Ting-Wei Wu & Shuo-Yu Huang & Ming-Hung Shih, 2024. "Advanced Trans-EEGNet Deep Learning Model for Hypoxic-Ischemic Encephalopathy Severity Grading," Mathematics, MDPI, vol. 12(24), pages 1-27, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3915-:d:1541950
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/24/3915/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/24/3915/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neda Abdelhamid & Arun Padmavathy & David Peebles & Fadi Thabtah & Daymond Goulder-Horobin, 2020. "Data Imbalance in Autism Pre-Diagnosis Classification Systems: An Experimental Study," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gulsum Alicioglu & Bo Sun & Shen Shyang Ho, 2022. "An Injury-Severity-Prediction-Driven Accident Prevention System," Sustainability, MDPI, vol. 14(11), pages 1-15, May.
    2. Chen, Shiuann-Shuoh & Choubey, Bhaskar & Singh, Vinay, 2021. "A neural network based price sensitive recommender model to predict customer choices based on price effect," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    3. Maria Tragouda & Michalis Doumpos & Constantin Zopounidis, 2024. "Identification of fraudulent financial statements through a multiā€label classification approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    4. Rahman, Md Jahidur & Zhu, Hongtao, 2024. "Detecting accounting fraud in family firms: Evidence from machine learning approaches," Advances in accounting, Elsevier, vol. 64(C).
    5. Sung-Mook Oh & Jin Park & Jinsun Yang & Young-Gyun Oh & Kyung-Woo Yi, 2023. "Smart classification method to detect irregular nozzle spray patterns inside carbon black reactor using ensemble transfer learning," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2729-2745, August.
    6. Lin, Fengming & Fang, Shu-Cherng & Fang, Xiaolei & Gao, Zheming & Luo, Jian, 2024. "A distributionally robust chance-constrained kernel-free quadratic surface support vector machine," European Journal of Operational Research, Elsevier, vol. 316(1), pages 46-60.
    7. Janis Ivanovs & Andreas Haberl & Raitis Melniks, 2024. "Modeling Geospatial Distribution of Peat Layer Thickness Using Machine Learning and Aerial Laser Scanning Data," Land, MDPI, vol. 13(4), pages 1-14, April.
    8. Firuz Kamalov & Linda Smail & Ikhlaas Gurrib, 2021. "Forecasting with Deep Learning: S&P 500 index," Papers 2103.14080, arXiv.org.
    9. Zhang, Sainan & Zhang, Jun & Song, Weiguo & Yang, Longnan & Zhao, Xuedan, 2024. "Hierarchical-attention-based neural network for gait emotion recognition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    10. Yang Hui & Xuesong Mei & Gedong Jiang & Fei Zhao & Ziwei Ma & Tao Tao, 2022. "Assembly quality evaluation for linear axis of machine tool using data-driven modeling approach," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 753-769, March.
    11. Xinchun Zhu & Yang Wu & Xu Zhao & Yunchen Yang & Shuangquan Liu & Luyi Shi & Yelong Wu, 2024. "Overview of Wind and Photovoltaic Data Stream Classification and Data Drift Issues," Energies, MDPI, vol. 17(17), pages 1-24, September.
    12. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Mubarak Alrumaidhi & Mohamed M. G. Farag & Hesham A. Rakha, 2023. "Comparative Analysis of Parametric and Non-Parametric Data-Driven Models to Predict Road Crash Severity among Elderly Drivers Using Synthetic Resampling Techniques," Sustainability, MDPI, vol. 15(13), pages 1-30, June.
    14. Muhammad Asif Ali Rehmani & Saad Aslam & Shafiqur Rahman Tito & Snjezana Soltic & Pieter Nieuwoudt & Neel Pandey & Mollah Daud Ahmed, 2021. "Power Profile and Thresholding Assisted Multi-Label NILM Classification," Energies, MDPI, vol. 14(22), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:24:p:3915-:d:1541950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.