Author
Listed:
- Ji Feng
(School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China)
- Jiashuang Huang
(School of Information Science and Technology, Nantong University, Nantong 226019, China)
- Chang Guo
(School of Science, Nantong University, Nantong 226019, China)
- Zhenquan Shi
(School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China)
Abstract
Timely and accurate traffic flow prediction is crucial for stabilizing road conditions, reducing environmental pollution, and mitigating economic losses. While current graph convolution methods have achieved certain results, they do not fully leverage the true advantages of graph convolution. There is still room for improvement in simultaneously addressing multi-graph convolution, optimizing graphs, and simulating road conditions. Based on this, this paper proposes MSA-GCN: Multistage Spatio-Temporal Aggregation Graph Convolutional Networks for Traffic Flow Prediction. This method overcomes the aforementioned issues by dividing the process into different stages and achieves promising prediction results. In the first stage, we construct a latent similarity adjacency matrix and address the randomness interference features in similarity features through two optimizations using the proposed ConvGRU Attention Layer (CGAL module) and the Causal Similarity Capture Module (CSC module), which includes Granger causality tests. In the second stage, we mine the potential correlation between roads using the Correlation Completion Module (CC module) to create a global correlation adjacency matrix as a complement for potential correlations. In the third stage, we utilize the proposed Auto-LRU autoencoder to pre-train various weather features, encoding them into the model’s prediction process to enhance its ability to simulate the real world and improve interpretability. Finally, in the fourth stage, we fuse these features and use a Bidirectional Gated Recurrent Unit (BiGRU) to model time dependencies, outputting the prediction results through a linear layer. Our model demonstrates a performance improvement of 29.33%, 27.03%, and 23.07% on three real-world datasets (PEMSD8, LOSLOOP, and SZAREA) compared to advanced baseline methods, and various ablation experiments validate the effectiveness of each stage and module.
Suggested Citation
Ji Feng & Jiashuang Huang & Chang Guo & Zhenquan Shi, 2024.
"MSA-GCN: Multistage Spatio-Temporal Aggregation Graph Convolutional Networks for Traffic Flow Prediction,"
Mathematics, MDPI, vol. 12(21), pages 1-29, October.
Handle:
RePEc:gam:jmathe:v:12:y:2024:i:21:p:3338-:d:1505962
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:21:p:3338-:d:1505962. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.