IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i20p3242-d1500257.html
   My bibliography  Save this article

Fast Global and Local Semi-Supervised Learning via Matrix Factorization

Author

Listed:
  • Yuanhua Du

    (College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China
    These authors contributed equally to this work.)

  • Wenjun Luo

    (College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China
    These authors contributed equally to this work.)

  • Zezhong Wu

    (College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, China)

  • Nan Zhou

    (School of Electronic Information and Electrical Engineering, Chengdu University, Chengdu 610225, China)

Abstract

Matrix factorization has demonstrated outstanding performance in machine learning. Recently, graph-based matrix factorization has gained widespread attention. However, graph-based methods are only suitable for handling small amounts of data. This paper proposes a fast semi-supervised learning method using only matrix factorization, which considers both global and local information. By introducing bipartite graphs into symmetric matrix factorization, the technique can handle large datasets effectively. It is worth noting that by utilizing tag information, the proposed symmetric matrix factorization becomes convex and unconstrained, i.e., the non-convex problem min x ( 1 − x 2 ) 2 is transformed into a convex problem. This allows it to be optimized quickly using state-of-the-art unconstrained optimization algorithms. The computational complexity of the proposed method is O ( n m d ) , which is much lower than that of the original symmetric matrix factorization, which is O ( n 2 d ) , and even lower than that of other anchor-based methods, which is O ( n m d + m 2 n + m 3 ) , where n represents the number of samples, d represents the number of features, and m ≪ n represents the number of anchors. The experimental results on multiple public datasets indicate that the proposed method achieves higher performance in less time.

Suggested Citation

  • Yuanhua Du & Wenjun Luo & Zezhong Wu & Nan Zhou, 2024. "Fast Global and Local Semi-Supervised Learning via Matrix Factorization," Mathematics, MDPI, vol. 12(20), pages 1-20, October.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:20:p:3242-:d:1500257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/20/3242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/20/3242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael Teixeira & Mário Antunes & Diogo Gomes & Rui L. Aguiar, 2024. "Comparison of Semantic Similarity Models on Constrained Scenarios," Information Systems Frontiers, Springer, vol. 26(4), pages 1307-1330, August.
    2. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    3. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    4. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    5. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    6. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    7. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    8. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    9. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    10. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    11. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    12. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).
    13. Md Nazrul Islam & Md Mofazzal Hossain & Md Shafayet Shahed Ornob, 2024. "Business research on Industry 4.0: a systematic review using topic modelling approach," Future Business Journal, Springer, vol. 10(1), pages 1-15, December.
    14. Jingfeng Guo & Chao Zheng & Shanshan Li & Yutong Jia & Bin Liu, 2022. "BiInfGCN: Bilateral Information Augmentation of Graph Convolutional Networks for Recommendation," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    15. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    16. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    17. Lei, Da & Cheng, Long & Wang, Pengfei & Chen, Xuewu & Zhang, Lin, 2024. "Identifying service bottlenecks in public bikesharing flow networks," Journal of Transport Geography, Elsevier, vol. 116(C).
    18. Semi Min & Juyong Park, 2019. "Modeling narrative structure and dynamics with networks, sentiment analysis, and topic modeling," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-20, December.
    19. Zhang, Lifeng & Chao, Xiangrui & Qian, Qian & Jing, Fuying, 2022. "Credit evaluation solutions for social groups with poor services in financial inclusion: A technical forecasting method," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    20. Yi Yu & Jaeseung Baek & Ali Tosyali & Myong K. Jeong, 2024. "Robust asymmetric non-negative matrix factorization for clustering nodes in directed networks," Annals of Operations Research, Springer, vol. 341(1), pages 245-265, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:20:p:3242-:d:1500257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.