IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i19p3067-d1489409.html
   My bibliography  Save this article

Cutting-Edge Amalgamation of Web 3.0 and Hybrid Chaotic Blockchain Authentication for Healthcare 4.0

Author

Listed:
  • Ajay Kumar

    (Department of Computer Science Engineering and Technology, Bennett University, Greater Noida 201310, India)

  • Kumar Abhishek

    (Department of Computer Science and Engineering, National Institute of Technology, Patna 800005, India)

  • Surbhi Bhatia Khan

    (School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, UK
    Adjunct Research Faculty at the Centre for Research Impact & Outcome, Chitkara University, Rajpura 140401, India)

  • Saeed Alzahrani

    (Management Information System Department, College of Business Administration, King Saud University, Riyadh 11362, Saudi Arabia)

  • Mohammed Alojail

    (Management Information System Department, College of Business Administration, King Saud University, Riyadh 11362, Saudi Arabia)

Abstract

Healthcare 4.0 is considered the most promising technology for gathering data from humans and strongly couples with a communication system for precise clinical and diagnosis performance. Though sensor-driven devices have largely made our everyday lives easier, these technologies have been suffering from various security challenges. Because of data breaches and privacy issues, this heightens the demand for a comprehensive healthcare solution. Since most healthcare data are sensitive and valuable and transferred mostly via the Internet, the safety and confidentiality of patient data remain an important concern. To face the security challenges in Healthcare 4.0, Web 3.0 and blockchain technology have been increasingly deployed to resolve the security breaches due to their immutability and decentralized properties. In this research article, a Web 3.0 ensemble hybrid chaotic blockchain framework is proposed for effective and secure authentication in the Healthcare 4.0 industry. The proposed framework uses the Infura Web API, Web 3.0, hybrid chaotic keys, Ganache interfaces, and MongoDB. To allow for more secure authentication, an ensemble of scroll and Henon maps is deployed to formulate the high dynamic hashes during the formation of genesis blocks, and all of the data are backed in the proposed model. The complete framework was tested in Ethereum blockchain using Web 3.0, in which Python 3.19 is used as the major programming tool for developing the different interfaces. Formal analysis is carried out with Burrows–Abadi–Needham Logic (BAN) to assess the cybersecurity reliability of the suggested framework, and NIST standard tests are used for a thorough review. Furthermore, the robustness of the proposed blockchain is also measured and compared with the other secured blockchain frameworks. Experimental results demonstrate that the proposed model exhibited more defensive characteristics against multiple attacks and outperformed the other models in terms of complexity and robustness. Finally, the paper gives a panoramic view of integrating Web 3.0 with the blockchain and the inevitable directions of a secured authentication framework for Healthcare 4.0.

Suggested Citation

  • Ajay Kumar & Kumar Abhishek & Surbhi Bhatia Khan & Saeed Alzahrani & Mohammed Alojail, 2024. "Cutting-Edge Amalgamation of Web 3.0 and Hybrid Chaotic Blockchain Authentication for Healthcare 4.0," Mathematics, MDPI, vol. 12(19), pages 1-32, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3067-:d:1489409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/19/3067/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/19/3067/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    2. Gousia Habib & Sparsh Sharma & Sara Ibrahim & Imtiaz Ahmad & Shaima Qureshi & Malik Ishfaq, 2022. "Blockchain Technology: Benefits, Challenges, Applications, and Integration of Blockchain Technology with Cloud Computing," Future Internet, MDPI, vol. 14(11), pages 1-22, November.
    3. Mandeep Kaur & Surender Singh & Manjit Kaur, 2021. "Computational Image Encryption Techniques: A Comprehensive Review," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    2. Wang, Binni & Wang, Pong & Tu, Yiliu, 2021. "Customer satisfaction service match and service quality-based blockchain cloud manufacturing," International Journal of Production Economics, Elsevier, vol. 240(C).
    3. Ulpan Tokkozhina & Ana Lucia Martins & Joao C. Ferreira, 2023. "Multi-tier supply chain behavior with blockchain technology: evidence from a frozen fish supply chain," Operations Management Research, Springer, vol. 16(3), pages 1562-1576, September.
    4. Su, Dan & Zhang, Lijun & Peng, Hua & Saeidi, Parvaneh & Tirkolaee, Erfan Babaee, 2023. "Technical challenges of blockchain technology for sustainable manufacturing paradigm in Industry 4.0 era using a fuzzy decision support system," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    5. Maurizio Massaro & Francesca Dal Mas & Charbel Jose Chiappetta Jabbour & Carlo Bagnoli, 2020. "Crypto‐economy and new sustainable business models: Reflections and projections using a case study analysis," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(5), pages 2150-2160, September.
    6. Yuemei Ding & Dequan Zheng & Xiaoyu Niu, 2023. "Collaborative Green Innovation of Livestock Product Three-Level Supply Chain Traceability System: A Value Co-Creation Perspective," Sustainability, MDPI, vol. 16(1), pages 1-28, December.
    7. Liu Jiaguo & Zhang Huimin & Zhao Huida, 2021. "Blockchain Technology Investment and Sharing Strategy of Port Supply Chain Under Competitive Environment," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 280-309, June.
    8. Giuseppe Varavallo & Giuseppe Caragnano & Fabrizio Bertone & Luca Vernetti-Prot & Olivier Terzo, 2022. "Traceability Platform Based on Green Blockchain: An Application Case Study in Dairy Supply Chain," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    9. Wang, Jiaxin & Zhao, Mu & Huang, Xiang & Song, Zilong & Sun, Di, 2024. "Supply chain diffusion mechanisms for AI applications: A perspective on audit pricing," International Review of Financial Analysis, Elsevier, vol. 93(C).
    10. Büttgen, Marion & al.,, 2021. "Blockchain in Service Management and Service Research - Developing a Research Agenda and Managerial Implications," SMR - Journal of Service Management Research, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 5(2), pages 71-102.
    11. Wang, Chengfu & Chen, Xiangfeng & Xu, Xun & Jin, Wei, 2023. "Financing and operating strategies for blockchain technology-driven accounts receivable chains," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1279-1295.
    12. Davies, Jennifer & Sharifi, Hossein & Lyons, Andrew & Forster, Rick & Elsayed, Omar Khaled Shokry Mohamed, 2024. "Non-fungible tokens: The missing ingredient for sustainable supply chains in the metaverse age?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    13. Mahmoona Khalil & Kausar Fiaz Khawaja & Muddassar Sarfraz, 2022. "The adoption of blockchain technology in the financial sector during the era of fourth industrial revolution: a moderated mediated model," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2435-2452, August.
    14. Mona Haji & Laoucine Kerbache & Mahaboob Muhammad & Tareq Al-Ansari, 2020. "Roles of Technology in Improving Perishable Food Supply Chains," Logistics, MDPI, vol. 4(4), pages 1-24, December.
    15. Dong, Ciwei & Huang, Qianzhi & Pan, Yuqing & Ng, Chi To & Liu, Renjun, 2023. "Logistics outsourcing: Effects of greenwashing and blockchain technology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 170(C).
    16. Jinxuan Song & Xu Yan, 2023. "Impact of Government Subsidies, Competition, and Blockchain on Green Supply Chain Decisions," Sustainability, MDPI, vol. 15(4), pages 1-27, February.
    17. Sachin Kumar Mangla & Yiğit Kazançoğlu & Abdullah Yıldızbaşı & Cihat Öztürk & Ahmet Çalık, 2022. "A conceptual framework for blockchain‐based sustainable supply chain and evaluating implementation barriers: A case of the tea supply chain," Business Strategy and the Environment, Wiley Blackwell, vol. 31(8), pages 3693-3716, December.
    18. Yuling Sun & Xiaomei Song & Yihao Jiang & Jian Guo, 2023. "Strategy Analysis of Fresh Agricultural Enterprises in a Competitive Circumstance: The Impact of Blockchain and Consumer Traceability Preferences," Mathematics, MDPI, vol. 11(5), pages 1-18, February.
    19. Magdalena Rusch & Josef‐Peter Schöggl & Rupert J. Baumgartner, 2023. "Application of digital technologies for sustainable product management in a circular economy: A review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(3), pages 1159-1174, March.
    20. Anhang Chen & Huiqin Zhang & Yuxiang Zhang & Junwei Zhao, 2024. "Manufacturers’ digital transformation under carbon cap-and-trade policy: investment strategy and environmental impact," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3067-:d:1489409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.