IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p224-d1316215.html
   My bibliography  Save this article

A Mathematical Model for Dynamic Electric Vehicles: Analysis and Optimization

Author

Listed:
  • Khalid Khan

    (Department of Mathematics, University of Malakand, Chakdara Dir(L) 18000, Khyber Pakhtunkhwa, Pakistan)

  • Inna Samuilik

    (Institute of Life Sciences and Technologies, Daugavpils University, 13 Vienibas Street, LV-5401 Daugavpils, Latvia
    Institute of Applied Mathematics, Riga Technical University, LV-1048 Riga, Latvia)

  • Amir Ali

    (Department of Mathematics, University of Malakand, Chakdara Dir(L) 18000, Khyber Pakhtunkhwa, Pakistan)

Abstract

In this article, we introduce a flexible and reliable technique to simulate and optimize the characteristics of a Dynamic Electrical Vehicle (DEV). The DEV model is a discrete event-based modeling technique used in electrical vehicle research to improve the effectiveness and performance of various electrical vehicles (EVs) components. Here, the DEVS model is applied to EV research in several ways, including battery management optimization, evaluation of power train design and control strategy, and driver behavior analysis. The essential power train elements, including the battery, motor, generator, internal combustion engine, and power electronics are included in the mathematical model for the dynamic electric vehicle. The model is derived using the conservation of energy principle. The model includes mathematical equations for the electrical power output, battery charge level, motor torque, motor power output, generator power output, internal combustion engine torque, mechanical power delivered to the generator, and the efficiencies of the power electronics, motor, generator, and engine. The model is examined by using a numerical method called the Runge–Kutta Method of order 4 for dynamic electric vehicle’s performance under various driving states for maximum effectiveness and performance. It is revealed that the DEV model provides a systematic method to simulate and optimize the behavior of complex EV systems.

Suggested Citation

  • Khalid Khan & Inna Samuilik & Amir Ali, 2024. "A Mathematical Model for Dynamic Electric Vehicles: Analysis and Optimization," Mathematics, MDPI, vol. 12(2), pages 1-19, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:224-:d:1316215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling the Performance of an Electric Vehicle Considering Various Driving Cycles," Mathematics, MDPI, vol. 11(11), pages 1-26, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita V. Martyushev & Boris V. Malozyomov & Olga A. Filina & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Stochastic Models and Processing Probabilistic Data for Solving the Problem of Improving the Electric Freight Transport Reliability," Mathematics, MDPI, vol. 11(23), pages 1-19, November.
    2. Boris V. Malozyomov & Nikita V. Martyushev & Nikita V. Babyr & Alexander V. Pogrebnoy & Egor A. Efremenkov & Denis V. Valuev & Aleksandr E. Boltrushevich, 2024. "Modelling of Reliability Indicators of a Mining Plant," Mathematics, MDPI, vol. 12(18), pages 1-25, September.
    3. Olga A. Filina & Nikita V. Martyushev & Boris V. Malozyomov & Vadim Sergeevich Tynchenko & Viktor Alekseevich Kukartsev & Kirill Aleksandrovich Bashmur & Pavel P. Pavlov & Tatyana Aleksandrovna Panfil, 2023. "Increasing the Efficiency of Diagnostics in the Brush-Commutator Assembly of a Direct Current Electric Motor," Energies, MDPI, vol. 17(1), pages 1-24, December.
    4. Pavel V. Shishkin & Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Development of a Mathematical Model of Operation Reliability of Mine Hoisting Plants," Mathematics, MDPI, vol. 12(12), pages 1-26, June.
    5. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Analysis of a Predictive Mathematical Model of Weather Changes Based on Neural Networks," Mathematics, MDPI, vol. 12(3), pages 1-17, February.
    6. Boris V. Malozyomov & Nikita V. Martyushev & Vladislav V. Kukartsev & Vadim S. Tynchenko & Vladimir V. Bukhtoyarov & Xiaogang Wu & Yadviga A. Tyncheko & Viktor A. Kukartsev, 2023. "Overview of Methods for Enhanced Oil Recovery from Conventional and Unconventional Reservoirs," Energies, MDPI, vol. 16(13), pages 1-48, June.
    7. Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Mathematical Modelling of Traction Equipment Parameters of Electric Cargo Trucks," Mathematics, MDPI, vol. 12(4), pages 1-32, February.
    8. Tingting Li & Shejun Deng & Caoye Lu & Yong Wang & Huajun Liao, 2023. "Optimization of Green Vehicle Paths Considering the Impact of Carbon Emissions: A Case Study of Municipal Solid Waste Collection and Transportation," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    9. Boris V. Malozyomov & Nikita V. Martyushev & Vladimir Yu. Konyukhov & Tatiana A. Oparina & Nikolay A. Zagorodnii & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Analysis of the Reliability of Modern Trolleybuses and Electric Buses," Mathematics, MDPI, vol. 11(15), pages 1-25, July.
    10. Yaoyidi Wang & Niansheng Chen & Guangyu Fan & Dingyu Yang & Lei Rao & Songlin Cheng & Xiaoyong Song, 2023. "DLPformer: A Hybrid Mathematical Model for State of Charge Prediction in Electric Vehicles Using Machine Learning Approaches," Mathematics, MDPI, vol. 11(22), pages 1-21, November.
    11. Pavel V. Shishkin & Boris V. Malozyomov & Nikita V. Martyushev & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2024. "Mathematical Logic Model for Analysing the Controllability of Mining Equipment," Mathematics, MDPI, vol. 12(11), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:224-:d:1316215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.