IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i17p2698-d1467224.html
   My bibliography  Save this article

Modelling the Shortest Path for Inner Warehouse Travelling Using the Floyd–Warshall Algorithm

Author

Listed:
  • Noraimi Azlin Mohd Nordin

    (School of Mathematical Sciences, College of Computing, Informatic and Mathematics, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Seremban, Seremban 70300, Malaysia)

  • S. Sarifah Radiah Shariff

    (Malaysia Institute of Transport (MITRANS), Universiti Teknologi MARA, Shah Alam 40450, Malaysia)

  • Siti Suzlin Supadi

    (Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia)

  • Ilyas Masudin

    (Industrial Engineering, University of Muhammadiyah Malang, Jl. Raya Tlogomas 246, Malang 65144, Indonesia)

Abstract

Order picking is referred as a critical process of selecting items requested by a customer in a warehouse. Meeting the demand of every customer is the main objective in this area. Large warehouses pose a challenge since the order-picking process is slowed considerably by the lengthy time it takes to transport items across the warehouse. Throughout the study, the system is hoped to develop proper procedures in the order-picking process. In handling this scenario, the decision-makers need to take any possible action to ensure the warehouses can keep operating and meeting the requirements and satisfaction of the customers. Due to this, the study’s main objective is to determine whether the Floyd–Warshall algorithm or the dynamic programming method will give the most accurate shortest path and minimum travel distance for order pickers. Two data sets (nine nodes and nineteen nodes) are used to determine the optimal path and minimum travel distance for the order picker to meet and satisfy customer orders for the warehouse. The two models were modified and applied to address real-world case studies from the automotive manufacturing company in Malaysia. The results show a big difference between the total distance by 113.48% for 19 nodes. Through this finding, the company may choose which method suits their preferences. Concurrently, this study may also contribute to problem-solving issues in any warehouse operation with a similar procedure.

Suggested Citation

  • Noraimi Azlin Mohd Nordin & S. Sarifah Radiah Shariff & Siti Suzlin Supadi & Ilyas Masudin, 2024. "Modelling the Shortest Path for Inner Warehouse Travelling Using the Floyd–Warshall Algorithm," Mathematics, MDPI, vol. 12(17), pages 1-19, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2698-:d:1467224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/17/2698/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/17/2698/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grosse, E. H. & Glock, C. H., 2015. "The effect of worker learning on manual order picking processes," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 69316, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    2. Ameknassi, Lhoussaine & Aït-Kadi, Daoud & Rezg, Nidhal, 2016. "Integration of logistics outsourcing decisions in a green supply chain design: A stochastic multi-objective multi-period multi-product programming model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 165-184.
    3. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.
    4. Jaber, M.Y. & Peltokorpi, J. & Glock, C.H. & Grosse, E.H. & Pusic, M., 2021. "Adjustment for cognitive interference enhances the predictability of the power learning curve," International Journal of Production Economics, Elsevier, vol. 234(C).
    5. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    6. Loske, Dominic & Klumpp, Matthias & Grosse, Eric H. & Modica, Tiziana & Glock, Christoph H., 2023. "Storage systems’ impact on order picking time: An empirical economic analysis of flow-rack storage systems," International Journal of Production Economics, Elsevier, vol. 261(C).
    7. Diefenbach, Heiko & Grosse, Eric H. & Glock, Christoph H., 2024. "Human-and-cost-centric storage assignment optimization in picker-to-parts warehouses," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1049-1068.
    8. Tsionas, Mike G., 2023. "Bayesian learning in performance. Is there any?," European Journal of Operational Research, Elsevier, vol. 311(1), pages 263-282.
    9. Liseth Contreras Hernandez & Hanser S. Jiménez G. & Priscilla P. L. Dantas & Cristiano A. V. Cavalcante, 2022. "Using multi-criteria decision making for selecting picking strategies," Operational Research, Springer, vol. 22(4), pages 3265-3290, September.
    10. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    11. Shandong Mou, 2022. "Integrated Order Picking and Multi-Skilled Picker Scheduling in Omni-Channel Retail Stores," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    12. Christoph H. Glock & Eric H. Grosse & Ralf M. Elbert & Torsten Franzke, 2017. "Maverick picking: the impact of modifications in work schedules on manual order picking processes," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6344-6360, November.
    13. Valeva, Silviya & Hewitt, Mike & Thomas, Barrett W. & Brown, Kenneth G., 2017. "Balancing flexibility and inventory in workforce planning with learning," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 194-207.
    14. Kumar, Suryakant & Sheu, Jiuh-Biing & Kundu, Tanmoy, 2023. "Planning a parts-to-picker order picking system with consideration of the impact of perceived workload," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    15. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    16. Zhang, Jun & Liu, Feng & Tang, Jiafu & Li, Yanhui, 2019. "The online integrated order picking and delivery considering Pickers’ learning effects for an O2O community supermarket," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 180-199.
    17. Ranasinghe, Thilini & Senanayake, Chanaka D. & Grosse, Eric H., 2024. "Effects of stochastic and heterogeneous worker learning on the performance of a two-workstation production system," International Journal of Production Economics, Elsevier, vol. 267(C).
    18. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.
    19. Bodendorf, Frank & Xie, Qiao & Merkl, Philipp & Franke, Jörg, 2022. "A multi-perspective approach to support collaborative cost management in supplier-buyer dyads," International Journal of Production Economics, Elsevier, vol. 245(C).
    20. I. Kudelska & G. Pawłowski, 2020. "Influence of assortment allocation management in the warehouse on the human workload," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 779-795, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2698-:d:1467224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.