IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i4d10.1007_s12351-020-00603-4.html
   My bibliography  Save this article

Using multi-criteria decision making for selecting picking strategies

Author

Listed:
  • Liseth Contreras Hernandez

    (Federal University of Pernambuco)

  • Hanser S. Jiménez G.

    (Federal University of Pernambuco)

  • Priscilla P. L. Dantas

    (Federal University of Pernambuco)

  • Cristiano A. V. Cavalcante

    (Federal University of Pernambuco)

Abstract

Choosing an order picking strategy is one of the most important decisions related to warehouse management. Making this decision properly can lead to high standards of efficiency, since order picking represents more than a half of a wholesale and retail organization’s operational costs and consumes a huge amount of the resources allocated to warehouse labor. Moreover, some productivity and service-oriented objectives related to order picking are sometimes conflicting, and require managers’ preferences to be considered, thus making the decision problem multi-objective and complex. We put forward a multicriteria decision model based on the ELECTRE III method that supports how to choose an order picking strategy. It takes managers’ preferences into consideration and integrates all the core elements for assessing how picking is being performed. Results showed that the model is able to identify the strategy that yields the best compromise between the objectives of productivity and the service-oriented ones, and that this strategy also represents the organization’s aims.

Suggested Citation

  • Liseth Contreras Hernandez & Hanser S. Jiménez G. & Priscilla P. L. Dantas & Cristiano A. V. Cavalcante, 2022. "Using multi-criteria decision making for selecting picking strategies," Operational Research, Springer, vol. 22(4), pages 3265-3290, September.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:4:d:10.1007_s12351-020-00603-4
    DOI: 10.1007/s12351-020-00603-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-020-00603-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-020-00603-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caroline Mota & Adiel Almeida, 2012. "A multicriteria decision model for assigning priority classes to activities in project management," Annals of Operations Research, Springer, vol. 199(1), pages 361-372, October.
    2. Parikh, Pratik J. & Meller, Russell D., 2008. "Selecting between batch and zone order picking strategies in a distribution center," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(5), pages 696-719, September.
    3. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    4. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    5. Grosse, Eric H. & Glock, Christoph H., 2015. "The effect of worker learning on manual order picking processes," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 882-890.
    6. Fontana Granotto, G. & Sgarbossa, F. & Glock, C. H. & Grosse, E. H., 2019. "The Effect of Worker Fatigue on the Performance of a Bucket Brigade Order Picking System," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 116320, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Lin, Che-Hung & Lu, Iuan-Yuan, 1999. "The procedure of determining the order picking strategies in distribution center," International Journal of Production Economics, Elsevier, vol. 60(1), pages 301-307, April.
    8. Henriques de Gusmão, Ana Paula & Mendonça Silva, Maisa & Poleto, Thiago & Camara e Silva, Lúcio & Cabral Seixas Costa, Ana Paula, 2018. "Cybersecurity risk analysis model using fault tree analysis and fuzzy decision theory," International Journal of Information Management, Elsevier, vol. 43(C), pages 248-260.
    9. Grosse, E. H. & Glock, C. H. & Jaber, M. Y., 2013. "The effect of worker learning and forgetting on storage reassignment decisions in order picking systems," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62648, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Grosse, E. H. & Glock, C. H., 2015. "The effect of worker learning on manual order picking processes," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 69316, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Rouwenhorst, B. & Reuter, B. & Stockrahm, V. & van Houtum, G. J. & Mantel, R. J. & Zijm, W. H. M., 2000. "Warehouse design and control: Framework and literature review," European Journal of Operational Research, Elsevier, vol. 122(3), pages 515-533, May.
    12. Denilson Dimas da Silva & Natália Veloso Caldas de Vasconcelos & Cristiano Alexandre Virginio Cavalcante, 2015. "Multicriteria Decision Model to Support the Assignment of Storage Location of Products in a Warehouse," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    2. I. Kudelska & G. Pawłowski, 2020. "Influence of assortment allocation management in the warehouse on the human workload," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 779-795, June.
    3. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    4. Vidal Vieira, José Geraldo & Ramos Toso, Milton & da Silva, João Eduardo Azevedo Ramos & Cabral Ribeiro, Priscilla Cristina, 2017. "An AHP-based framework for logistics operations in distribution centres," International Journal of Production Economics, Elsevier, vol. 187(C), pages 246-259.
    5. Zhang, Jun & Liu, Feng & Tang, Jiafu & Li, Yanhui, 2019. "The online integrated order picking and delivery considering Pickers’ learning effects for an O2O community supermarket," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 180-199.
    6. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.
    7. Dominic Loske & Matthias Klumpp & Maria Keil & Thomas Neukirchen, 2021. "Logistics Work, Ergonomics and Social Sustainability: Empirical Musculoskeletal System Strain Assessment in Retail Intralogistics," Logistics, MDPI, vol. 5(4), pages 1-25, December.
    8. Boysen, Nils & de Koster, René & Füßler, David, 2021. "The forgotten sons: Warehousing systems for brick-and-mortar retail chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 361-381.
    9. Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
    10. Parikh, Pratik J. & Meller, Russell D., 2010. "A travel-time model for a person-onboard order picking system," European Journal of Operational Research, Elsevier, vol. 200(2), pages 385-394, January.
    11. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    12. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    13. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    14. Shandong Mou, 2022. "Integrated Order Picking and Multi-Skilled Picker Scheduling in Omni-Channel Retail Stores," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    15. Alena Otto & Nils Boysen & Armin Scholl & Rico Walter, 2017. "Ergonomic workplace design in the fast pick area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 945-975, October.
    16. van der Gaast, Jelmer Pier & Weidinger, Felix, 2022. "A deep learning approach for the selection of an order picking system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 530-543.
    17. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.
    18. Battaïa, Olga & Delorme, Xavier & Dolgui, Alexandre & Hagemann, Johannes & Horlemann, Anika & Kovalev, Sergey & Malyutin, Sergey, 2015. "Workforce minimization for a mixed-model assembly line in the automotive industry," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 489-500.
    19. Ameknassi, Lhoussaine & Aït-Kadi, Daoud & Rezg, Nidhal, 2016. "Integration of logistics outsourcing decisions in a green supply chain design: A stochastic multi-objective multi-period multi-product programming model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 165-184.
    20. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:4:d:10.1007_s12351-020-00603-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.