IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i17p2683-d1466494.html
   My bibliography  Save this article

Supply–Demand Matching of Engineering Construction Materials in Complex Mountainous Areas Based on Complex Environment Two-Stage Stochastic Programing

Author

Listed:
  • Liu Bao

    (Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Peigen Zhang

    (School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 611756, China)

  • Ze Guo

    (Institute of Computing Technologies, China Academy of Railway Science Corporation Limited, Beijing 100081, China)

  • Wanqi Wang

    (Institute of Computing Technologies, China Academy of Railway Science Corporation Limited, Beijing 100081, China)

  • Qing Zhu

    (Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China)

  • Yulin Ding

    (Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China)

Abstract

Effective supply and demand matching for construction materials is a crucial challenge in large-scale railway projects, particularly in complex and hazardous environments. We propose a two-stage stochastic programing model that incorporates environmental uncertainties, such as natural disasters, into the supply chain optimization process. The first stage determines optimal locations and capacities for material supply points, while the second stage addresses material distribution under uncertain demand. We further enhance the model’s efficiency with Benders decomposition algorithm. The performance of our model is rigorously compared with existing optimization approaches, demonstrating its superior capability in handling environmental uncertainties and complex logistical scenarios. This study provides a novel framework for optimizing supply chains in challenging environments, offering significant improvements over traditional models in both adaptability and robustness.

Suggested Citation

  • Liu Bao & Peigen Zhang & Ze Guo & Wanqi Wang & Qing Zhu & Yulin Ding, 2024. "Supply–Demand Matching of Engineering Construction Materials in Complex Mountainous Areas Based on Complex Environment Two-Stage Stochastic Programing," Mathematics, MDPI, vol. 12(17), pages 1-14, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2683-:d:1466494
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/17/2683/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/17/2683/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mina, Hokey & Jayaraman, Vaidyanathan & Srivastava, Rajesh, 1998. "Combined location-routing problems: A synthesis and future research directions," European Journal of Operational Research, Elsevier, vol. 108(1), pages 1-15, July.
    2. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    3. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    4. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    2. Alvarez, Jose A. Lopez & Buijs, Paul & Deluster, Rogier & Coelho, Leandro C. & Ursavas, Evrim, 2020. "Strategic and operational decision-making in expanding supply chains for LNG as a fuel," Omega, Elsevier, vol. 97(C).
    3. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou & Hicham Medromi, 2022. "A machine-learning based hybrid algorithm for strategic location of urban bundling hubs to support shared public transport," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3215-3258, October.
    4. Michiel A. J. uit het Broek & Albert H. Schrotenboer & Bolor Jargalsaikhan & Kees Jan Roodbergen & Leandro C. Coelho, 2021. "Asymmetric Multidepot Vehicle Routing Problems: Valid Inequalities and a Branch-and-Cut Algorithm," Operations Research, INFORMS, vol. 69(2), pages 380-409, March.
    5. Rennemo, Sigrid Johansen & Rø, Kristina Fougner & Hvattum, Lars Magnus & Tirado, Gregorio, 2014. "A three-stage stochastic facility routing model for disaster response planning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 116-135.
    6. Younes Rahmani & Wahiba Ramdane Cherif-Khettaf & Ammar Oulamara, 2016. "The two-echelon multi-products location-routing problem with pickup and delivery: formulation and heuristic approaches," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 999-1019, February.
    7. Janjevic, Milena & Merchán, Daniel & Winkenbach, Matthias, 2021. "Designing multi-tier, multi-service-level, and multi-modal last-mile distribution networks for omni-channel operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1059-1077.
    8. Michael Schneider & Michael Drexl, 2017. "A survey of the standard location-routing problem," Annals of Operations Research, Springer, vol. 259(1), pages 389-414, December.
    9. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "The impact of depot location, fleet composition and routing on emissions in city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 81-102.
    10. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    11. Arslan, Okan, 2021. "The location-or-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 1-21.
    12. Chen Chao & Tian Zhihui & Yao Baozhen, 2019. "Optimization of two-stage location–routing–inventory problem with time-windows in food distribution network," Annals of Operations Research, Springer, vol. 273(1), pages 111-134, February.
    13. Menezes, Mozart B.C. & Ruiz-Hernández, Diego & Verter, Vedat, 2016. "A rough-cut approach for evaluating location-routing decisions via approximation algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 89-106.
    14. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "The fleet size and mix location-routing problem with time windows: Formulations and a heuristic algorithm," European Journal of Operational Research, Elsevier, vol. 248(1), pages 33-51.
    15. Zhang, Ying & Qi, Mingyao & Lin, Wei-Hua & Miao, Lixin, 2015. "A metaheuristic approach to the reliable location routing problem under disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 90-110.
    16. Bagheri Hosseini, Mozhde & Dehghanian, Farzad & Salari, Majid, 2019. "Selective capacitated location-routing problem with incentive-dependent returns in designing used products collection network," European Journal of Operational Research, Elsevier, vol. 272(2), pages 655-673.
    17. Janjevic, Milena & Winkenbach, Matthias & Merchán, Daniel, 2019. "Integrating collection-and-delivery points in the strategic design of urban last-mile e-commerce distribution networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 37-67.
    18. Matthias Winkenbach & Paul R. Kleindorfer & Stefan Spinler, 2016. "Enabling Urban Logistics Services at La Poste through Multi-Echelon Location-Routing," Transportation Science, INFORMS, vol. 50(2), pages 520-540, May.
    19. Olmez, Omer Berk & Gultekin, Ceren & Balcik, Burcu & Ekici, Ali & Özener, Okan Örsan, 2022. "A variable neighborhood search based matheuristic for a waste cooking oil collection network design problem," European Journal of Operational Research, Elsevier, vol. 302(1), pages 187-202.
    20. Fuyu Wang & Xuefei Ge & Yan Li & Jingjing Zheng & Weichen Zheng, 2023. "Optimising the Distribution of Multi-Cycle Emergency Supplies after a Disaster," Sustainability, MDPI, vol. 15(2), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:17:p:2683-:d:1466494. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.