IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i16p2580-d1460899.html
   My bibliography  Save this article

The Optimization of Picking in Logistics Warehouses in the Event of Sudden Picking Order Changes and Picking Route Blockages

Author

Listed:
  • Daiki Ueno

    (Mitsui-Soko Co., Ltd., Kobe 6540161, Japan)

  • Enna Hirata

    (Graduate School of Maritime Sciences, Kobe University, Kobe 658-0022, Japan)

Abstract

(1) Background: This work focuses on improving the efficiency of warehouse operations with the goal of promoting efficiency in the logistics industry and mitigating logistics-related labor shortages. Many factors are involved in warehouse operations, such as the optimal allocation of manpower, the optimal layout design, and the use of automatic guided vehicles, which together affect operational efficiency. (2) Methods: In this work, we developed an optimal method for operating a limited number of workers or picking robots in a specific area, coping with cases of sudden disruptions such as a change in picking order or the blockage of aisles. For this purpose, the number of pickers, the storage capacity, and other constraints such as sudden changes in picking orders during the picking process, as well as blockages in the aisles of a warehouse site, are considered. The total travel distance is minimized using Gurobi, an optimization solver. (3) Results: The picking routes were optimized in three different scenarios using the shortest route between the starting point and the picking points, resulting in up to a 31% efficiency improvement in terms of the total distance traveled. (4) Conclusions: The main contribution of this work is that it focuses on the day-to-day work situations of sudden changes in the picking order and the presence of route blocks in real-world logistics warehouse sites. It demonstrates the feasibility of responding to sudden disruptions and simultaneously optimizing picking routes in real time. This work contributes to the overall efficiency of logistics by providing a simple, yet practical, data-driven solution for the optimization of warehouse operations.

Suggested Citation

  • Daiki Ueno & Enna Hirata, 2024. "The Optimization of Picking in Logistics Warehouses in the Event of Sudden Picking Order Changes and Picking Route Blockages," Mathematics, MDPI, vol. 12(16), pages 1-14, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2580-:d:1460899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/16/2580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/16/2580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    2. Massimo Bertolini & Davide Mezzogori & Francesco Zammori, 2023. "Enhancing Manual Order Picking through a New Metaheuristic, Based on Particle Swarm Optimization," Mathematics, MDPI, vol. 11(14), pages 1-37, July.
    3. Jun Zhang & Xueyan Zhang & Yanfang Zhang, 2021. "A Study on Online Scheduling Problem of Integrated Order Picking and Delivery with Multizone Vehicle Routing Method for Online-to-Offline Supermarket," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shandong Mou, 2022. "Integrated Order Picking and Multi-Skilled Picker Scheduling in Omni-Channel Retail Stores," Mathematics, MDPI, vol. 10(9), pages 1-19, April.
    2. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    3. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    4. Kovács, András, 2011. "Optimizing the storage assignment in a warehouse served by milkrun logistics," International Journal of Production Economics, Elsevier, vol. 133(1), pages 312-318, September.
    5. A. Scholz & G. Wäscher, 2017. "Order Batching and Picker Routing in manual order picking systems: the benefits of integrated routing," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 491-520, June.
    6. Nilendra Singh Pawar & Subir S. Rao & Gajendra K. Adil, 2024. "Improving Order-Picking Performance in E-Commerce Warehouses through Entropy-Based Hierarchical Scattering," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    7. Polten, Lukas & Emde, Simon, 2022. "Multi-shuttle crane scheduling in automated storage and retrieval systems," European Journal of Operational Research, Elsevier, vol. 302(3), pages 892-908.
    8. Thierry Sauvage & Tony Cragg & Sarrah Chraibi & Oussama El Khalil Houssaini, 2018. "Running the Machine Faster: Acceleration, Humans and Warehousing," Post-Print hal-02905068, HAL.
    9. Jiuh‐Biing Sheu & Tsan‐Ming Choi, 2023. "Can we work more safely and healthily with robot partners? A human‐friendly robot–human‐coordinated order fulfillment scheme," Production and Operations Management, Production and Operations Management Society, vol. 32(3), pages 794-812, March.
    10. Janka Saderova & Andrea Rosova & Marian Sofranko & Peter Kacmary, 2021. "Example of Warehouse System Design Based on the Principle of Logistics," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    11. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    12. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    13. Grzegorz Tarczyński, 2023. "Linear programming models for optimal workload and batching in pick-and-pass warehousing systems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(3), pages 141-158.
    14. Danish Nasir & Rakesh Venkitasubramony & Suresh Kumar Jakhar, 2025. "Ergonomics in warehouse design and operations: a systematic literature review," Operational Research, Springer, vol. 25(1), pages 1-28, March.
    15. Sebastian Henn & André Scholz & Meike Stuhlmann & Gerhard Wäscher, 2015. "A New Mathematical Programming Formulation for the Single-Picker Routing Problem in a Single-Block Layout," FEMM Working Papers 150005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    16. Pan, Jason Chao-Hsien & Shih, Po-Hsun & Wu, Ming-Hung, 2015. "Order batching in a pick-and-pass warehousing system with group genetic algorithm," Omega, Elsevier, vol. 57(PB), pages 238-248.
    17. K. L. Choy & G. T. S. Ho & C. K. H. Lee, 2017. "A RFID-based storage assignment system for enhancing the efficiency of order picking," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 111-129, January.
    18. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    19. Boysen, Nils & Stephan, Konrad & Schwerdfeger, Stefan, 2024. "Order consolidation in warehouses: The loop sorter scheduling problem," European Journal of Operational Research, Elsevier, vol. 316(2), pages 459-472.
    20. Manuel Ostermeier & Andreas Holzapfel & Heinrich Kuhn & Daniel Schubert, 2022. "Integrated zone picking and vehicle routing operations with restricted intermediate storage," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 795-832, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2580-:d:1460899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.