IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v33y2023i3p141-158id9.html
   My bibliography  Save this article

Linear programming models for optimal workload and batching in pick-and-pass warehousing systems

Author

Listed:
  • Grzegorz Tarczyński

Abstract

Pick-and-pass systems are a part of picker-to-parts order-picking systems and constitute a very common storage solution in cases where customer orders are usually small and need to be completed very quickly. As workers pick items in the zones connected by conveyor, their work needs to be coordinated. The paper presents MILP models that optimize the order-picking process. The first model uses information about expected demand for items to solve the storage location problem and balance the workload across zones. The task of the next model is order-batching and sequencing – two concepts are presented that meet different assumptions. The results of the exemplary tasks solved with the use of the proposed MILP models show that the total picking time of a set of orders can be reduced by about 35-45% in comparison with random policies. The paper presents an equation for the lower bound of a makespan. Recommendations about the number of zones that guarantee the required system efficiency are also introduced.

Suggested Citation

  • Grzegorz Tarczyński, 2023. "Linear programming models for optimal workload and batching in pick-and-pass warehousing systems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(3), pages 141-158.
  • Handle: RePEc:wut:journl:v:33:y:2023:i:3:p:141-158:id:9
    DOI: 10.37190/ord230309
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/ord2023vol33no3_9.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord230309?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brynzer, H. & Johansson, M. I., 1995. "Design and performance of kitting and order picking systems," International Journal of Production Economics, Elsevier, vol. 41(1-3), pages 115-125, October.
    2. Mahdi Yousefi Nejad Attari & Ali Ebadi Torkayesh & Behnam Malmir & Ensiyeh Neyshabouri Jami, 2021. "Robust possibilistic programming for joint order batching and picker routing problem in warehouse management," International Journal of Production Research, Taylor & Francis Journals, vol. 59(14), pages 4434-4452, July.
    3. Pan, Jason Chao-Hsien & Shih, Po-Hsun & Wu, Ming-Hung, 2015. "Order batching in a pick-and-pass warehousing system with group genetic algorithm," Omega, Elsevier, vol. 57(PB), pages 238-248.
    4. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    5. Gagliardi, Jean-Philippe & Ruiz, Angel & Renaud, Jacques, 2008. "Space allocation and stock replenishment synchronization in a distribution center," International Journal of Production Economics, Elsevier, vol. 115(1), pages 19-27, September.
    6. Yu, Mengfei & de Koster, René B.M., 2009. "The impact of order batching and picking area zoning on order picking system performance," European Journal of Operational Research, Elsevier, vol. 198(2), pages 480-490, October.
    7. N Anken & J-P Gagliardi & J Renaud & A Ruiz, 2011. "Space allocation and aisle positioning for an industrial pick-to-belt system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 38-49, January.
    8. Ardjmand, Ehsan & Shakeri, Heman & Singh, Manjeet & Sanei Bajgiran, Omid, 2018. "Minimizing order picking makespan with multiple pickers in a wave picking warehouse," International Journal of Production Economics, Elsevier, vol. 206(C), pages 169-183.
    9. İbrahim Muter & Temel Öncan, 2015. "An exact solution approach for the order batching problem," IISE Transactions, Taylor & Francis Journals, vol. 47(7), pages 728-738, July.
    10. Jane, Chin-Chia & Laih, Yih-Wenn, 2005. "A clustering algorithm for item assignment in a synchronized zone order picking system," European Journal of Operational Research, Elsevier, vol. 166(2), pages 489-496, October.
    11. Daniels, Richard L. & Rummel, Jeffrey L. & Schantz, Robert, 1998. "A model for warehouse order picking," European Journal of Operational Research, Elsevier, vol. 105(1), pages 1-17, February.
    12. de Koster, Rene, 1994. "Performance approximation of pick-to-belt orderpicking systems," European Journal of Operational Research, Elsevier, vol. 72(3), pages 558-573, February.
    13. Jelle de Vries & René de Koster & Daan Stam, 2016. "Exploring the role of picker personality in predicting picking performance with pick by voice, pick to light and RF-terminal picking," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2260-2274, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Jason Chao-Hsien & Shih, Po-Hsun & Wu, Ming-Hung, 2015. "Order batching in a pick-and-pass warehousing system with group genetic algorithm," Omega, Elsevier, vol. 57(PB), pages 238-248.
    2. Pardo, Eduardo G. & Gil-Borrás, Sergio & Alonso-Ayuso, Antonio & Duarte, Abraham, 2024. "Order batching problems: Taxonomy and literature review," European Journal of Operational Research, Elsevier, vol. 313(1), pages 1-24.
    3. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    4. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    5. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    6. Masae, Makusee & Glock, Christoph H. & Vichitkunakorn, Panupong, 2021. "A method for efficiently routing order pickers in the leaf warehouse," International Journal of Production Economics, Elsevier, vol. 234(C).
    7. Rafael Diaz, 2016. "Using dynamic demand information and zoning for the storage of non-uniform density stock keeping units," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2487-2498, April.
    8. Giannikas, Vaggelis & Lu, Wenrong & Robertson, Brian & McFarlane, Duncan, 2017. "An interventionist strategy for warehouse order picking: Evidence from two case studies," International Journal of Production Economics, Elsevier, vol. 189(C), pages 63-76.
    9. de Koster, M.B.M. & Le-Duc, T. & Roodbergen, K.J., 2006. "Design and Control of Warehouse Order Picking: a literature review," ERIM Report Series Research in Management ERS-2006-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    10. Yu, M. & de Koster, M.B.M., 2007. "Performance Approximation and Design of Pick-and-Pass Order Picking Systems," ERIM Report Series Research in Management ERS-2007-082-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.
    12. David Füßler & Nils Boysen & Konrad Stephan, 2019. "Trolley line picking: storage assignment and order sequencing to increase picking performance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1087-1121, December.
    13. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    14. Çelik, Melih & Archetti, Claudia & Süral, Haldun, 2022. "Inventory routing in a warehouse: The storage replenishment routing problem," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1117-1132.
    15. Alena Otto & Nils Boysen & Armin Scholl & Rico Walter, 2017. "Ergonomic workplace design in the fast pick area," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 945-975, October.
    16. van der Gaast, Jelmer Pier & Weidinger, Felix, 2022. "A deep learning approach for the selection of an order picking system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 530-543.
    17. N Anken & J-P Gagliardi & J Renaud & A Ruiz, 2011. "Space allocation and aisle positioning for an industrial pick-to-belt system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 38-49, January.
    18. Jelmer P. van der Gaast & René B. M. de Koster & Ivo J. B. F. Adan & Jacques A. C. Resing, 2020. "Capacity Analysis of Sequential Zone Picking Systems," Operations Research, INFORMS, vol. 68(1), pages 161-179, January.
    19. AERTS, Babiche & CORNELISSENS, Trijntje & SÖRENSEN, Kenneth, 2022. "The internal warehouse replenishment problem: the importance of storage and replenishment policies," Working Papers 2022007, University of Antwerp, Faculty of Business and Economics.
    20. van Gils, Teun & Ramaekers, Katrien & Caris, An & de Koster, René B.M., 2018. "Designing efficient order picking systems by combining planning problems: State-of-the-art classification and review," European Journal of Operational Research, Elsevier, vol. 267(1), pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:33:y:2023:i:3:p:141-158:id:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.