IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i16p2521-d1457043.html
   My bibliography  Save this article

Hybrid Bio-Optimized Algorithms for Hyperparameter Tuning in Machine Learning Models: A Software Defect Prediction Case Study

Author

Listed:
  • Madhusmita Das

    (Department of Information Technology, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India)

  • Biju R. Mohan

    (Department of Information Technology, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India)

  • Ram Mohana Reddy Guddeti

    (Department of Information Technology, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India)

  • Nandini Prasad

    (Department of Information Technology, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India)

Abstract

Addressing real-time optimization problems becomes increasingly challenging as their complexity continues to escalate over time. So bio-optimization algorithms (BoAs) come into the picture to solve such problems due to their global search capability, adaptability, versatility, parallelism, and robustness. This article aims to perform hyperparameter tuning of machine learning (ML) models by integrating them with BoAs. Aiming to maximize the accuracy of the hybrid bio-optimized defect prediction (HBoDP) model, this research paper develops four novel hybrid BoAs named the gravitational force Lévy flight grasshopper optimization algorithm (GFLFGOA), the gravitational force Lévy flight grasshopper optimization algorithm–sparrow search algorithm (GFLFGOA-SSA), the gravitational force grasshopper optimization algorithm–sparrow search algorithm (GFGOA-SSA), and the Lévy flight grasshopper optimization algorithm–sparrow search algorithm (LFGOA-SSA). These aforementioned algorithms are proposed by integrating the good exploration capacity of the SSA with the faster convergence of the LFGOA and GFGOA. The performances of the GFLFGOA, GFLFGOA-SSA, GFGOA-SSA, and LFGOA-SSA are verified by conducting two different experiments. Firstly, the experimentation was conducted on nine benchmark functions (BFs) to assess the mean, standard deviation (SD), and convergence rate. The second experiment focuses on boosting the accuracy of the HBoDP model through the fine-tuning of the hyperparameters in the artificial neural network (ANN) and XGBOOST (XGB) models. To justify the effectiveness and performance of these hybrid novel algorithms, we compared them with four base algorithms, namely the grasshopper optimization algorithm (GOA), the sparrow search algorithm (SSA), the gravitational force grasshopper optimization algorithm (GFGOA), and the Lévy flight grasshopper optimization algorithm (LFGOA). Our findings illuminate the effectiveness of this hybrid approach in enhancing the convergence rate and accuracy. The experimental results show a faster convergence rate for BFs and improvements in software defect prediction accuracy for the NASA defect datasets by comparing them with some baseline methods.

Suggested Citation

  • Madhusmita Das & Biju R. Mohan & Ram Mohana Reddy Guddeti & Nandini Prasad, 2024. "Hybrid Bio-Optimized Algorithms for Hyperparameter Tuning in Machine Learning Models: A Software Defect Prediction Case Study," Mathematics, MDPI, vol. 12(16), pages 1-31, August.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2521-:d:1457043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/16/2521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/16/2521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu-Sheng Wu & Feng-Ming Zhang, 2014. "Wolf Pack Algorithm for Unconstrained Global Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-17, March.
    2. Xuan Chen & Feng Cheng & Cong Liu & Long Cheng & Yin Mao, 2021. "An improved Wolf pack algorithm for optimization problems: Design and evaluation," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-23, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Li & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Survey of Lévy Flight-Based Metaheuristics for Optimization," Mathematics, MDPI, vol. 10(15), pages 1-27, August.
    2. Juan Li & Yuan-Hua Yang & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Moth Search: Variants, Hybrids, and Applications," Mathematics, MDPI, vol. 10(21), pages 1-19, November.
    3. Shuxin Wang & Hairong You & Yinggao Yue & Li Cao, 2021. "A novel topology optimization of coverage-oriented strategy for wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 17(4), pages 15501477219, April.
    4. A. S. Syed Shahul Hameed & Narendran Rajagopalan, 2022. "SPGD: Search Party Gradient Descent Algorithm, a Simple Gradient-Based Parallel Algorithm for Bound-Constrained Optimization," Mathematics, MDPI, vol. 10(5), pages 1-24, March.
    5. Kottath, Rahul & Singh, Priyanka, 2023. "Influencer buddy optimization: Algorithm and its application to electricity load and price forecasting problem," Energy, Elsevier, vol. 263(PC).
    6. Mohamed Abdel-Basset & Reda Mohamed & Safaa Saber & S. S. Askar & Mohamed Abouhawwash, 2021. "Modified Flower Pollination Algorithm for Global Optimization," Mathematics, MDPI, vol. 9(14), pages 1-37, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:16:p:2521-:d:1457043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.