IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0254239.html
   My bibliography  Save this article

An improved Wolf pack algorithm for optimization problems: Design and evaluation

Author

Listed:
  • Xuan Chen
  • Feng Cheng
  • Cong Liu
  • Long Cheng
  • Yin Mao

Abstract

Wolf Pack Algorithm (WPA) is a swarm intelligence algorithm that simulates the food searching process of wolves. It is widely used in various engineering optimization problems due to its global convergence and computational robustness. However, the algorithm has some weaknesses such as low convergence speed and easily falling into local optimum. To tackle the problems, we introduce an improved approach called OGL-WPA in this work, based on the employments of Opposition-based learning and Genetic algorithm with Levy’s flight. Specifically, in OGL-WPA, the population of wolves is initialized by opposition-based learning to maintain the diversity of the initial population during global search. Meanwhile, the leader wolf is selected by genetic algorithm to avoid falling into local optimum and the round-up behavior is optimized by Levy’s flight to coordinate the global exploration and local development capabilities. We present the detailed design of our algorithm and compare it with some other nature-inspired metaheuristic algorithms using various classical test functions. The experimental results show that the proposed algorithm has better global and local search capability, especially in the presence of multi-peak and high-dimensional functions.

Suggested Citation

  • Xuan Chen & Feng Cheng & Cong Liu & Long Cheng & Yin Mao, 2021. "An improved Wolf pack algorithm for optimization problems: Design and evaluation," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-23, August.
  • Handle: RePEc:plo:pone00:0254239
    DOI: 10.1371/journal.pone.0254239
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254239
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0254239&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0254239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madhusmita Das & Biju R. Mohan & Ram Mohana Reddy Guddeti & Nandini Prasad, 2024. "Hybrid Bio-Optimized Algorithms for Hyperparameter Tuning in Machine Learning Models: A Software Defect Prediction Case Study," Mathematics, MDPI, vol. 12(16), pages 1-31, August.
    2. Juan Li & Yuan-Hua Yang & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Moth Search: Variants, Hybrids, and Applications," Mathematics, MDPI, vol. 10(21), pages 1-19, November.
    3. Juan Li & Qing An & Hong Lei & Qian Deng & Gai-Ge Wang, 2022. "Survey of Lévy Flight-Based Metaheuristics for Optimization," Mathematics, MDPI, vol. 10(15), pages 1-27, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0254239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.