IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/465082.html
   My bibliography  Save this article

Wolf Pack Algorithm for Unconstrained Global Optimization

Author

Listed:
  • Hu-Sheng Wu
  • Feng-Ming Zhang

Abstract

The wolf pack unites and cooperates closely to hunt for the prey in the Tibetan Plateau, which shows wonderful skills and amazing strategies. Inspired by their prey hunting behaviors and distribution mode, we abstracted three intelligent behaviors, scouting, calling, and besieging, and two intelligent rules, winner-take-all generation rule of lead wolf and stronger-survive renewing rule of wolf pack. Then we proposed a new heuristic swarm intelligent method, named wolf pack algorithm (WPA). Experiments are conducted on a suit of benchmark functions with different characteristics, unimodal/multimodal, separable/nonseparable, and the impact of several distance measurements and parameters on WPA is discussed. What is more, the compared simulation experiments with other five typical intelligent algorithms, genetic algorithm, particle swarm optimization algorithm, artificial fish swarm algorithm, artificial bee colony algorithm, and firefly algorithm, show that WPA has better convergence and robustness, especially for high-dimensional functions.

Suggested Citation

  • Hu-Sheng Wu & Feng-Ming Zhang, 2014. "Wolf Pack Algorithm for Unconstrained Global Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-17, March.
  • Handle: RePEc:hin:jnlmpe:465082
    DOI: 10.1155/2014/465082
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2014/465082.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2014/465082.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/465082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Madhusmita Das & Biju R. Mohan & Ram Mohana Reddy Guddeti & Nandini Prasad, 2024. "Hybrid Bio-Optimized Algorithms for Hyperparameter Tuning in Machine Learning Models: A Software Defect Prediction Case Study," Mathematics, MDPI, vol. 12(16), pages 1-31, August.
    2. Mohamed Abdel-Basset & Reda Mohamed & Safaa Saber & S. S. Askar & Mohamed Abouhawwash, 2021. "Modified Flower Pollination Algorithm for Global Optimization," Mathematics, MDPI, vol. 9(14), pages 1-37, July.
    3. Kottath, Rahul & Singh, Priyanka, 2023. "Influencer buddy optimization: Algorithm and its application to electricity load and price forecasting problem," Energy, Elsevier, vol. 263(PC).
    4. Shuxin Wang & Hairong You & Yinggao Yue & Li Cao, 2021. "A novel topology optimization of coverage-oriented strategy for wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 17(4), pages 15501477219, April.
    5. A. S. Syed Shahul Hameed & Narendran Rajagopalan, 2022. "SPGD: Search Party Gradient Descent Algorithm, a Simple Gradient-Based Parallel Algorithm for Bound-Constrained Optimization," Mathematics, MDPI, vol. 10(5), pages 1-24, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:465082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.