IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p2124-d1430124.html
   My bibliography  Save this article

Designing Decentralized Multi-Variable Robust Controllers: A Multi-Objective Approach Considering Nearly Optimal Solutions

Author

Listed:
  • Alberto Pajares

    (Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Xavier Blasco

    (Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Juan Manuel Herrero

    (Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Javier Sanchis

    (Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain)

  • Raúl Simarro

    (Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain)

Abstract

This article presents a new methodology for designing a robust, decentralized control structure that considers stochastic parametric uncertainty and uses a multi-objective approach. This design tunes the loop pairing and controller to be implemented. The proposed approach obtains the optimal and nearly optimal controllers relevant to the nominal scenario. Once obtained, the robustness of these solutions is analyzed. This methodology is compared with a traditional approach for selecting the most robust control pairings. The traditional approach obtains lightly robust controllers, i.e., the most robust controllers with an acceptable performance for the nominal scenario, and it obtains trade-offs between robustness and nominal performance. However, the traditional approach has a high computational cost because it is necessary to consider uncertainty in the optimization stage. The proposed approach mathematically guarantees the acquisition of at least one neighbor controller for each existing lightly robust controller. Therefore, this approach obtains solutions similar to lightly robust solutions with a significantly lower computational cost. Furthermore, the proposed approach provides the designer with more diversity and interesting solutions that are not lightly robust. The different approaches are compared using an example of a multi-variable process with two alternative control structures. The results show the usefulness of the proposed methodology.

Suggested Citation

  • Alberto Pajares & Xavier Blasco & Juan Manuel Herrero & Javier Sanchis & Raúl Simarro, 2024. "Designing Decentralized Multi-Variable Robust Controllers: A Multi-Objective Approach Considering Nearly Optimal Solutions," Mathematics, MDPI, vol. 12(13), pages 1-21, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2124-:d:1430124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/2124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/2124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Alan L. Erera & Juan C. Morales & Martin Savelsbergh, 2009. "Robust Optimization for Empty Repositioning Problems," Operations Research, INFORMS, vol. 57(2), pages 468-483, April.
    3. Marc Goerigk & Marie Schmidt & Anita Schöbel & Martin Knoth & Matthias Müller-Hannemann, 2014. "The Price of Strict and Light Robustness in Timetable Information," Transportation Science, INFORMS, vol. 48(2), pages 225-242, May.
    4. Markus Hartikainen & Kaisa Miettinen & Margaret Wiecek, 2012. "PAINT: Pareto front interpolation for nonlinear multiobjective optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 845-867, July.
    5. Ehrgott, Matthias & Ide, Jonas & Schöbel, Anita, 2014. "Minmax robustness for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 239(1), pages 17-31.
    6. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Ide & Anita Schöbel, 2016. "Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 235-271, January.
    2. Carrizosa, Emilio & Goerigk, Marc & Schöbel, Anita, 2017. "A biobjective approach to recoverable robustness based on location planning," European Journal of Operational Research, Elsevier, vol. 261(2), pages 421-435.
    3. Alberto Caprara & Laura Galli & Sebastian Stiller & Paolo Toth, 2014. "Delay-Robust Event Scheduling," Operations Research, INFORMS, vol. 62(2), pages 274-283, April.
    4. Klamroth, Kathrin & Köbis, Elisabeth & Schöbel, Anita & Tammer, Christiane, 2017. "A unified approach to uncertain optimization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 403-420.
    5. Erin K. Doolittle & Hervé L. M. Kerivin & Margaret M. Wiecek, 2018. "Robust multiobjective optimization with application to Internet routing," Annals of Operations Research, Springer, vol. 271(2), pages 487-525, December.
    6. Schöbel, Anita & Zhou-Kangas, Yue, 2021. "The price of multiobjective robustness: Analyzing solution sets to uncertain multiobjective problems," European Journal of Operational Research, Elsevier, vol. 291(2), pages 782-793.
    7. Raith, Andrea & Schmidt, Marie & Schöbel, Anita & Thom, Lisa, 2018. "Multi-objective minmax robust combinatorial optimization with cardinality-constrained uncertainty," European Journal of Operational Research, Elsevier, vol. 267(2), pages 628-642.
    8. Hombach, Laura Elisabeth & Büsing, Christina & Walther, Grit, 2018. "Robust and sustainable supply chains under market uncertainties and different risk attitudes – A case study of the German biodiesel market," European Journal of Operational Research, Elsevier, vol. 269(1), pages 302-312.
    9. Oumayma Bahri & El-Ghazali Talbi, 2021. "Robustness-based approach for fuzzy multi-objective problems," Annals of Operations Research, Springer, vol. 296(1), pages 707-733, January.
    10. Shahparvari, Shahrooz & Abbasi, Babak, 2017. "Robust stochastic vehicle routing and scheduling for bushfire emergency evacuation: An Australian case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 32-49.
    11. Jia Shu & Miao Song, 2014. "Dynamic Container Deployment: Two-Stage Robust Model, Complexity, and Computational Results," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 135-149, February.
    12. Anita Schöbel, 2014. "Generalized light robustness and the trade-off between robustness and nominal quality," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(2), pages 161-191, October.
    13. Yue Zhou-Kangas & Kaisa Miettinen, 2019. "Decision making in multiobjective optimization problems under uncertainty: balancing between robustness and quality," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 391-413, June.
    14. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    15. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    16. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    17. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    18. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    19. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    20. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2124-:d:1430124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.