IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i13p2008-d1424743.html
   My bibliography  Save this article

Multi-Objective Optimization in Support of Life-Cycle Cost-Performance-Based Design of Reinforced Concrete Structures

Author

Listed:
  • Ali Sabbaghzade Feriz

    (Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan P.O. Box 98155-987, Iran)

  • Hesam Varaee

    (Department of Civil Engineering, Ale Taha Institute of Higher Education, Tehran P.O. Box 14888-36164, Iran)

  • Mohammad Reza Ghasemi

    (Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan P.O. Box 98155-987, Iran)

Abstract

Surveys on the optimum seismic design of structures reveal that many investigations focus on minimizing initial costs while satisfying performance constraints. Although reducing initial costs while complying with earthquake design codes significantly ensures occupant safety, it may still cause considerable economic losses and fatalities. Therefore, calculating potential earthquake damages over the structure’s lifetime is essential from an optimal Life-Cycle Cost (LCC) design perspective. LCC analysis evaluates economic feasibility, including construction, operation, occupancy, maintenance, and end-of-life costs. The population-based, meta-heuristic Ideal Gas Molecular Movement (IGMM) algorithm has proven effective in solving highly nonlinear mono- and multi-objective engineering problems. This paper investigates the LCC-based mono- and multi-objective optimum design of a 3D four-story concrete building structure using the Endurance Time (ET) method, which is employed for its efficiency in estimating structural responses under varying seismic hazard levels. The novelty of this work lies in integrating the ET method with the IGMM algorithm to comprehensively address both economic and performance criteria in seismic design. The results indicate that the proposed technique significantly reduces minor injury costs, rental costs, and income costs by 22%, 16%, and 16%, respectively, achieving a total reduction of 10% in all structural Life-Cycle Costs, which is considered significant.

Suggested Citation

  • Ali Sabbaghzade Feriz & Hesam Varaee & Mohammad Reza Ghasemi, 2024. "Multi-Objective Optimization in Support of Life-Cycle Cost-Performance-Based Design of Reinforced Concrete Structures," Mathematics, MDPI, vol. 12(13), pages 1-26, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2008-:d:1424743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/13/2008/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/13/2008/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Kappos & E. Dimitrakopoulos, 2008. "Feasibility of pre-earthquake strengthening of buildings based on cost-benefit and life-cycle cost analysis, with the aid of fragility curves," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 33-54, April.
    2. Mitropoulou, Chara Ch. & Lagaros, Nikos D. & Papadrakakis, Manolis, 2011. "Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1311-1331.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasios Gkimprixis & John Douglas & Enrico Tubaldi, 2021. "Seismic risk management through insurance and its sensitivity to uncertainty in the hazard model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1629-1657, September.
    2. Morshedi, Mohamad Ali & Kashani, Hamed, 2022. "Assessment of vulnerability reduction policies: Integration of economic and cognitive models of decision-making," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Maria Polese & Marco Gaetani d’Aragona & Marco Di Ludovico & Andrea Prota, 2018. "Sustainable Selective Mitigation Interventions towards Effective Earthquake Risk Reduction at the Community Scale," Sustainability, MDPI, vol. 10(8), pages 1-22, August.
    4. Hooman Motamed & Bijan Khazai & Mohsen Ghafory-Ashtiany & Kambod Amini-Hosseini, 2014. "An automated model for optimizing budget allocation in earthquake mitigation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 51-68, January.
    5. Cheng, Minghui & Frangopol, Dan M., 2022. "Life-cycle optimization of structural systems based on cumulative prospect theory: Effects of the reference point and risk attitudes," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Fadel Miguel, Leandro F. & Beck, André T., 2024. "Optimal path shape of friction-based Track-Nonlinear Energy Sinks to minimize lifecycle costs of buildings subjected to ground accelerations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    7. Mitropoulou, Chara Ch. & Lagaros, Nikos D. & Papadrakakis, Manolis, 2011. "Life-cycle cost assessment of optimally designed reinforced concrete buildings under seismic actions," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1311-1331.
    8. Jairo Valcárcel & Miguel Mora & Omar Cardona & Lluis Pujades & Alex Barbat & Gabriel Bernal, 2013. "Methodology and applications for the benefit cost analysis of the seismic risk reduction in building portfolios at broadscale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 845-868, October.
    9. Maria Bostenaru Dan, 2018. "Decision Making Based on Benefit-Costs Analysis: Costs of Preventive Retrofit versus Costs of Repair after Earthquake Hazards," Sustainability, MDPI, vol. 10(5), pages 1-26, May.
    10. Li Long & Shansuo Zheng & Yixin Zhang & Longfei Sun & Yan Zhou & Liguo Dong, 2020. "CEDLES: a framework for plugin-based applications for earthquake risk prediction and loss assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 531-556, August.
    11. Pantea Vaziri & Rachel Davidson & Linda Nozick & Mahmood Hosseini, 2010. "Resource allocation for regional earthquake risk mitigation: a case study of Tehran, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 527-546, June.
    12. Paolo La Greca & Giuseppe Margani, 2018. "Seismic and Energy Renovation Measures for Sustainable Cities: A Critical Analysis of the Italian Scenario," Sustainability, MDPI, vol. 10(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2008-:d:1424743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.