IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i12p1782-d1410905.html
   My bibliography  Save this article

Research on Quantile Regression Method for Longitudinal Interval-Censored Data Based on Bayesian Double Penalty

Author

Listed:
  • Ke Zhao

    (School of Science, Hubei University of Technology, Wuhan 430068, China)

  • Ting Shu

    (School of Science, Hubei University of Technology, Wuhan 430068, China)

  • Chaozhu Hu

    (School of Science, Hubei University of Technology, Wuhan 430068, China)

  • Youxi Luo

    (School of Science, Hubei University of Technology, Wuhan 430068, China)

Abstract

The increasing prominence of the problem of censored data in various fields has made studying how to perform parameter estimation and variable selection in censored mixed-effects models one of the hotspots of current research. In this paper, considering the situation that the response variable is restricted by the bilateral limit, a double-penalty Bayesian Tobit quantile regression model was constructed to carry out parameter estimation and variable selection in the interval-censored mixed-effects model, and at the same time, the fixed-effects and random effects coefficients are compressed in Tobit’s mixed-effects model, so as to reduce the estimation error of the model at the same time as the variable selection of the model is carried out. The posterior distribution of each unknown parameter was derived using the conditional Laplace prior and the mixed truncated normal distribution of interval-censored data, and then the Gibbs sampling algorithm for unknown parameter estimation was constructed. Through Monte Carlo simulation, it was found that the new method is more advantageous than the classical method in terms of variable selection and parameter estimation accuracy in various situations, such as different model sparsity, different data censoring ratios and different random error distributions, and the model is able to realize automatic variable selection. Finally, the new method is used to analyze the correlation between the crime rate and various economic indicators in China.

Suggested Citation

  • Ke Zhao & Ting Shu & Chaozhu Hu & Youxi Luo, 2024. "Research on Quantile Regression Method for Longitudinal Interval-Censored Data Based on Bayesian Double Penalty," Mathematics, MDPI, vol. 12(12), pages 1-30, June.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1782-:d:1410905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/12/1782/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/12/1782/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Xiuqing Zhou & Yanqin Feng & Xiuli Du, 2017. "Quantile regression for interval censored data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(8), pages 3848-3863, April.
    3. Weihua Zhao & Riquan Zhang & Yazhao Lv & Jicai Liu, 2014. "Variable selection for varying dispersion beta regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 95-108, January.
    4. Kim, Mo Se & Lee, Byung Sung & Lee, Hye Seon & Lee, Seung Ho & Lee, Junseok & Kim, Wonse, 2020. "Robust estimation of outage costs in South Korea using a machine learning technique: Bayesian Tobit quantile regression," Applied Energy, Elsevier, vol. 278(C).
    5. Athanasios Kottas & Milovan Krnjajić, 2009. "Bayesian Semiparametric Modelling in Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 297-319, June.
    6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    7. Peter Xue-Kun Song & Ming Tan, 2000. "Marginal Models for Longitudinal Continuous Proportional Data," Biometrics, The International Biometric Society, vol. 56(2), pages 496-502, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
    2. Zhao, Weihua & Lian, Heng & Zhang, Riquan & Lai, Peng, 2016. "Estimation and variable selection for proportional response data with partially linear single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 40-56.
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    5. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    6. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    7. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    8. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    9. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    10. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    11. Stephan Brunow & Stefanie Lösch & Ostap Okhrin, 2022. "Labor market tightness and individual wage growth: evidence from Germany," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 56(1), pages 1-21, December.
    12. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    13. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    14. Gareth M. James & Peter Radchenko & Jinchi Lv, 2009. "DASSO: connections between the Dantzig selector and lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 127-142, January.
    15. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    16. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    17. Shuyu Meng & Zhensheng Huang, 2024. "Variable Selection in Semi-Functional Partially Linear Regression Models with Time Series Data," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
    18. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    19. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
    20. Naimoli, Antonio, 2022. "Modelling the persistence of Covid-19 positivity rate in Italy," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:12:p:1782-:d:1410905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.