IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i11p1650-d1401085.html
   My bibliography  Save this article

Reliability Estimation in Stress Strength for Generalized Rayleigh Distribution Using a Lower Record Ranked Set Sampling Scheme

Author

Listed:
  • Yinuo Dong

    (School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, China
    These authors contributed equally to this work.)

  • Wenhao Gui

    (School of Mathematics and Statistics, Beijing Jiaotong University, Beijing 100044, China
    These authors contributed equally to this work.)

Abstract

This paper explores the likelihood and Bayesian estimation of the stress–strength reliability parameter ( R ) based on a lower record ranked set sampling scheme from the generalized Rayleigh distribution. Maximum likelihood and Bayesian estimators as well as confidence intervals of R are derived and their properties are studied. Furthermore, two parametric bootstrap confidence intervals are introduced in the paper. A comparative simulation study is conducted to assess the effectiveness of these four confidence interval methodologies in estimating R . The application of the methods is demonstrated using real data on fiber strength to showcase their practicability and relevance in the industry.

Suggested Citation

  • Yinuo Dong & Wenhao Gui, 2024. "Reliability Estimation in Stress Strength for Generalized Rayleigh Distribution Using a Lower Record Ranked Set Sampling Scheme," Mathematics, MDPI, vol. 12(11), pages 1-15, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1650-:d:1401085
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/11/1650/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/11/1650/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahdi Rasekhi & Mohammad Mehdi Saber & Haitham M. Yousof, 2020. "Bayesian and classical inference of reliability in multicomponent stress-strength under the generalized logistic model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(21), pages 5114-5125, September.
    2. McIntyre, G.A., 2005. "A Method for Unbiased Selective Sampling, Using Ranked Sets," The American Statistician, American Statistical Association, vol. 59, pages 230-232, August.
    3. Mahdi Salehi & Jafar Ahmadi, 2014. "Record ranked set sampling scheme," METRON, Springer;Sapienza Università di Roma, vol. 72(3), pages 351-365, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omer Ozturk & N. Balakrishnan, 2009. "Exact two-sample nonparametric test for quantile difference between two populations based on ranked set samples," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 235-249, March.
    2. Naif Alotaibi & A. S. Al-Moisheer & Ibrahim Elbatal & Mansour Shrahili & Mohammed Elgarhy & Ehab M. Almetwally, 2023. "Half Logistic Inverted Nadarajah–Haghighi Distribution under Ranked Set Sampling with Applications," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    3. Jinguo Gao & Omer Ozturk, 2017. "Rank regression in order restricted randomised designs," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 231-257, April.
    4. Omer Ozturk, 2019. "Two-stage cluster samples with ranked set sampling designs," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 63-91, February.
    5. Manal M. Yousef & Amal S. Hassan & Abdullah H. Al-Nefaie & Ehab M. Almetwally & Hisham M. Almongy, 2022. "Bayesian Estimation Using MCMC Method of System Reliability for Inverted Topp–Leone Distribution Based on Ranked Set Sampling," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    6. Omer Ozturk & Olena Kravchuk & Raymond Correll, 2022. "Row–Column Sampling Design Using Auxiliary Ranking Variables," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 652-673, December.
    7. Al-Saleh, Mohammad Fraiwan & Samuh, Monjed Hisham, 2008. "On multistage ranked set sampling for distribution and median estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2066-2078, January.
    8. Mohamed Aboraya & Haitham M. Yousof & G.G. Hamedani & Mohamed Ibrahim, 2020. "A New Family of Discrete Distributions with Mathematical Properties, Characterizations, Bayesian and Non-Bayesian Estimation Methods," Mathematics, MDPI, vol. 8(10), pages 1-25, September.
    9. Jesse Frey & Timothy G. Feeman, 2017. "Efficiency comparisons for partially rank-ordered set sampling," Statistical Papers, Springer, vol. 58(4), pages 1149-1163, December.
    10. Gao, Jinguo & Ozturk, Omer, 2012. "Two sample distribution-free inference based on partially rank-ordered set samples," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 876-884.
    11. Omer Ozturk & N. Balakrishnan, 2009. "An Exact Control-Versus-Treatment Comparison Test Based on Ranked Set Samples," Biometrics, The International Biometric Society, vol. 65(4), pages 1213-1222, December.
    12. Juan Du & Steven N. MacEachern, 2008. "Judgement Post-Stratification for Designed Experiments," Biometrics, The International Biometric Society, vol. 64(2), pages 345-354, June.
    13. Xinlei Wang & Johan Lim & Seung-Jean Kim & Kyu Hahn, 2015. "Estimating cell probabilities in contingency tables with constraints on marginals/conditionals by geometric programming with applications," Computational Statistics, Springer, vol. 30(1), pages 107-129, March.
    14. Frey, Jesse & Wang, Le, 2013. "Most powerful rank tests for perfect rankings," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 157-168.
    15. Ozturk, Omer & Jafari Jozani, Mohammad, 2014. "Inclusion probabilities in partially rank ordered set sampling," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 122-132.
    16. Jesse Frey & Timothy Feeman, 2013. "Variance estimation using judgment post-stratification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 551-569, June.
    17. Omer Ozturk, 2016. "Estimation of a Finite Population Mean and Total Using Population Ranks of Sample Units," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 181-202, March.
    18. Omer Ozturk & Olena Kravchuk, 2021. "Judgment Post-stratified Assessment Combining Ranking Information from Multiple Sources, with a Field Phenotyping Example," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 329-348, September.
    19. Armin Hatefi & Mohammad Jafari Jozani, 2017. "Information content of partially rank-ordered set samples," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(2), pages 117-149, April.
    20. Frey, Jesse & Feeman, Timothy G., 2012. "An improved mean estimator for judgment post-stratification," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 418-426.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:11:p:1650-:d:1401085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.