IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i10p1546-d1395318.html
   My bibliography  Save this article

A Dynamic Programming Approach to the Collision Avoidance of Autonomous Ships

Author

Listed:
  • Raphael Zaccone

    (Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecompunicazioni (DITEN), Scuola Politecnica, Università degli Studi di Genova, Via Montallegro 1, 16145 Genova, Italy)

Abstract

The advancement of autonomous capabilities in maritime navigation has gained significant attention, with a trajectory moving from decision support systems to full autonomy. This push towards autonomy has led to extensive research focusing on collision avoidance, a critical aspect of safe navigation. Among the various possible approaches, dynamic programming is a promising tool for optimizing collision avoidance maneuvers. This paper presents a DP formulation for the collision avoidance of autonomous vessels. We set up the problem framework, formulate it as a multi-stage decision process, define cost functions and constraints focusing on the actual requirements a marine maneuver must comply with, and propose a solution algorithm leveraging parallel computing. Additionally, we present a greedy approximation to reduce algorithm complexity. We put the proposed algorithms to the test in realistic navigation scenarios and also develop an extensive test on a large set of randomly generated scenarios, comparing them with the RRT* algorithm using performance metrics proposed in the literature. The results show the potential benefits of an autonomous navigation or decision support framework.

Suggested Citation

  • Raphael Zaccone, 2024. "A Dynamic Programming Approach to the Collision Avoidance of Autonomous Ships," Mathematics, MDPI, vol. 12(10), pages 1-22, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1546-:d:1395318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/10/1546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/10/1546/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1546-:d:1395318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.