IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2133-d1138248.html
   My bibliography  Save this article

An Influence-Based Label Propagation Algorithm for Overlapping Community Detection

Author

Listed:
  • Hao Xu

    (College of Computer and Information Science, Southwest University, Chongqing 400700, China)

  • Yuan Ran

    (Hanhong College, Southwest University, Chongqing 400700, China)

  • Junqian Xing

    (Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia)

  • Li Tao

    (College of Computer and Information Science, Southwest University, Chongqing 400700, China)

Abstract

Of the various characteristics of network structure, the community structure has received the most research attention. In social networks, communities are divided into overlapping communities and disjoint communities. The former are closer to the actual situation of real society than the latter, making it necessary to explore a more effective overlapping community detection algorithm. The label propagation algorithm (LPA) has been widely used in large-scale data owing to its low time cost. In the traditional LPA, all of the nodes are regarded as equivalent relationships. In this case, unreliable nodes reduce the accuracy of label propagation. To solve this problem, we propose the influence-based community overlap propagation algorithm (INF-COPRA) for ranking the influence of nodes and labels. To control the propagation process and prevent error propagation, the algorithm only provides influential nodes with labels in the initialization phase, and those labels with high influence are preferred in the propagation process. Lastly, the accuracy of INF-COPRA and existing algorithms is compared on benchmark networks and real networks. The experimental results show that the INF-COPRA algorithm significantly improves the extentded modularity (EQ) and normal mutual information (NMI) of the community, indicating that it can outperform state-of-art methods in overlapping community detection tasks.

Suggested Citation

  • Hao Xu & Yuan Ran & Junqian Xing & Li Tao, 2023. "An Influence-Based Label Propagation Algorithm for Overlapping Community Detection," Mathematics, MDPI, vol. 11(9), pages 1-17, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2133-:d:1138248
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Shen, Huawei & Cheng, Xueqi & Cai, Kai & Hu, Mao-Bin, 2009. "Detect overlapping and hierarchical community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1706-1712.
    3. Guimera, R. & Danon, L. & Diaz-Guilera, A. & Giralt, F. & Arenas, A., 2006. "The real communication network behind the formal chart: Community structure in organizations," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 653-667, December.
    4. Jia Hou Chin & Kuru Ratnavelu, 2016. "Detecting Community Structure by Using a Constrained Label Propagation Algorithm," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-21, May.
    5. Cai, Biao & Wang, Yanpeng & Zeng, Lina & Hu, Yanmei & Li, Hongjun, 2020. "Edge classification based on Convolutional Neural Networks for community detection in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    6. Yen-Liang Chen & Ching-Hao Chuang & Yu-Ting Chiu, 2014. "Community detection based on social interactions in a social network," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(3), pages 539-550, March.
    7. Chen, Naiyue & Liu, Yun & Chen, Haiqiang & Cheng, Junjun, 2017. "Detecting communities in social networks using label propagation with information entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 788-798.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    2. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    3. Zhou, Xu & Liu, Yanheng & Wang, Jian & Li, Chun, 2017. "A density based link clustering algorithm for overlapping community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 65-78.
    4. Wu, Jianshe & Wang, Xiaohua & Jiao, Licheng, 2012. "Synchronization on overlapping community network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 508-514.
    5. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    6. Fu, Xianghua & Liu, Liandong & Wang, Chao, 2013. "Detection of community overlap according to belief propagation and conflict," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 941-952.
    7. Wu, Tao & Guo, Yuxiao & Chen, Leiting & Liu, Yanbing, 2016. "Integrated structure investigation in complex networks by label propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 68-80.
    8. Tzai-Hung Wen & Wei Chien Benny Chin, 2015. "Incorporation of Spatial Interactions in Location Networks to Identify Critical Geo-Referenced Routes for Assessing Disease Control Measures on a Large-Scale Campus," IJERPH, MDPI, vol. 12(4), pages 1-15, April.
    9. Cui, Yaozu & Wang, Xingyuan, 2016. "Detecting one-mode communities in bipartite networks by bipartite clustering triangular," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 307-315.
    10. Gui, Chun & Zhang, Ruisheng & Hu, Rongjing & Huang, Guoming & Wei, Jiaxuan, 2018. "Overlapping communities detection based on spectral analysis of line graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 50-65.
    11. Ren, Fu-Xin & Shen, Hua-Wei & Cheng, Xue-Qi, 2012. "Modeling the clustering in citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3533-3539.
    12. Huang, Zhenhua & Wu, Junxian & Zhu, Wentao & Wang, Zhenyu & Mehrotra, Sharad & Zhao, Yangyang, 2021. "Visualizing complex networks by leveraging community structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    13. Zhou, Xu & Liu, Yanheng & Zhang, Jindong & Liu, Tuming & Zhang, Di, 2015. "An ant colony based algorithm for overlapping community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 289-301.
    14. Shang, Ronghua & Luo, Shuang & Li, Yangyang & Jiao, Licheng & Stolkin, Rustam, 2015. "Large-scale community detection based on node membership grade and sub-communities integration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 279-294.
    15. Mu, Caihong & Liu, Yong & Liu, Yi & Wu, Jianshe & Jiao, Licheng, 2014. "Two-stage algorithm using influence coefficient for detecting the hierarchical, non-overlapping and overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 47-61.
    16. Hosseini-Pozveh, Maryam & Ghorbanian, Maedeh & Tabaiyan, Maryam, 2022. "A label propagation-based method for community detection in directed signed social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    17. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    18. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    19. Pirvu Daniela & Barbuceanu Mircea, 2016. "Recent Contributions Of The Statistical Physics In The Research Of Banking, Stock Exchange And Foreign Exchange Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 2, pages 85-92, April.
    20. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2133-:d:1138248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.