IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i12p3533-3539.html
   My bibliography  Save this article

Modeling the clustering in citation networks

Author

Listed:
  • Ren, Fu-Xin
  • Shen, Hua-Wei
  • Cheng, Xue-Qi

Abstract

For the study of citation networks, a challenging problem is modeling the high clustering. Existing studies indicate that the promising way to model the high clustering is a copying strategy, i.e., a paper copies the references of its neighbor as its own references. However, the line of models highly underestimates the number of abundant triangles observed in real citation networks and thus cannot well model the high clustering. In this paper, we point out that the failure of existing models lies in that they do not capture the connecting patterns among existing papers. By leveraging the knowledge indicated by such connecting patterns, we further propose a new model for the high clustering in citation networks. Experiments on two real world citation networks, respectively from a special research area and a multidisciplinary research area, demonstrate that our model can reproduce not only the power-law degree distribution as traditional models but also the number of triangles, the high clustering coefficient and the size distribution of co-citation clusters as observed in these real networks.

Suggested Citation

  • Ren, Fu-Xin & Shen, Hua-Wei & Cheng, Xue-Qi, 2012. "Modeling the clustering in citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3533-3539.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:12:p:3533-3539
    DOI: 10.1016/j.physa.2012.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112001173
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Redner, 1998. "How popular is your paper? An empirical study of the citation distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 4(2), pages 131-134, July.
    2. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    3. Wang, Mingyang & Yu, Guang & Yu, Daren, 2009. "Effect of the age of papers on the preferential attachment in citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(19), pages 4273-4276.
    4. Shen, Huawei & Cheng, Xueqi & Cai, Kai & Hu, Mao-Bin, 2009. "Detect overlapping and hierarchical community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1706-1712.
    5. Sen, Parongama, 2005. "Directed accelerated growth: application in citation network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(1), pages 139-146.
    6. Wang, Mingyang & Yu, Guang & Yu, Daren, 2008. "Measuring the preferential attachment mechanism in citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4692-4698.
    7. Chaomei Chen & Fidelia Ibekwe-SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    8. Young-Ho Eom & Santo Fortunato, 2011. "Characterizing and Modeling Citation Dynamics," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-7, September.
    9. Hajra, Kamalika Basu & Sen, Parongama, 2005. "Aging in citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(1), pages 44-48.
    10. Hajra, Kamalika Basu & Sen, Parongama, 2006. "Modelling aging characteristics in citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 575-582.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Raj K. & Petersen, Alexander M. & Pammolli, Fabio & Fortunato, Santo, 2018. "The memory of science: Inflation, myopia, and the knowledge network," Journal of Informetrics, Elsevier, vol. 12(3), pages 656-678.
    2. S. R. Goldberg & H. Anthony & T. S. Evans, 2015. "Modelling citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1577-1604, December.
    3. Quispe, Laura V.C. & Tohalino, Jorge A.V. & Amancio, Diego R., 2021. "Using virtual edges to improve the discriminability of co-occurrence text networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    4. Pandey, Pradumn Kumar & Singh, Mayank & Goyal, Pawan & Mukherjee, Animesh & Chakrabarti, Soumen, 2020. "Analysis of reference and citation copying in evolving bibliographic networks," Journal of Informetrics, Elsevier, vol. 14(1).
    5. Sidorov, Sergei & Mironov, Sergei, 2021. "Growth network models with random number of attached links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 576(C).
    6. Monachary Kammari & Durga Bhavani S, 2023. "Time-stamp based network evolution model for citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3723-3741, June.
    7. Jang, Hyun Jin & Woo, Han-Gyun & Lee, Changyong, 2017. "Hawkes process-based technology impact analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 511-529.
    8. Brito, Ana C.M. & Silva, Filipi N. & Amancio, Diego R., 2021. "Associations between author-level metrics in subsequent time periods," Journal of Informetrics, Elsevier, vol. 15(4).
    9. Shen, Yi, 2013. "Detect local communities in networks with an outside rate coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(12), pages 2821-2829.
    10. Clough, James R. & Evans, Tim S., 2016. "What is the dimension of citation space?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 235-247.
    11. Colman, E.R. & Rodgers, G.J., 2013. "Complex scale-free networks with tunable power-law exponent and clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5501-5510.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yan & Fu, Tom Z.J. & Chiu, Dah Ming, 2014. "Generalized preferential attachment considering aging," Journal of Informetrics, Elsevier, vol. 8(3), pages 650-658.
    2. S. R. Goldberg & H. Anthony & T. S. Evans, 2015. "Modelling citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1577-1604, December.
    3. D. R. Amancio & M. G. V. Nunes & O. N. Oliveira & L. F. Costa, 2012. "Using complex networks concepts to assess approaches for citations in scientific papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 827-842, June.
    4. Xiaorui Jiang & Xiaoping Sun & Hai Zhuge, 2013. "Graph-based algorithms for ranking researchers: not all swans are white!," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(3), pages 743-759, September.
    5. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    6. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    7. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    8. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    9. Zhou, Xu & Liu, Yanheng & Wang, Jian & Li, Chun, 2017. "A density based link clustering algorithm for overlapping community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 65-78.
    10. Wu, Jianshe & Wang, Xiaohua & Jiao, Licheng, 2012. "Synchronization on overlapping community network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 508-514.
    11. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    12. Fu, Xianghua & Liu, Liandong & Wang, Chao, 2013. "Detection of community overlap according to belief propagation and conflict," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 941-952.
    13. Tol, Richard S.J., 2013. "The Matthew effect for cohorts of economists," Journal of Informetrics, Elsevier, vol. 7(2), pages 522-527.
    14. Hao Xu & Yuan Ran & Junqian Xing & Li Tao, 2023. "An Influence-Based Label Propagation Algorithm for Overlapping Community Detection," Mathematics, MDPI, vol. 11(9), pages 1-17, May.
    15. Mike Thelwall, 2016. "Interpreting correlations between citation counts and other indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(1), pages 337-347, July.
    16. Xie, Zheng & Ouyang, Zhenzheng & Liu, Qi & Li, Jianping, 2016. "A geometric graph model for citation networks of exponentially growing scientific papers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 167-175.
    17. Lina M. Cortés & Andrés Mora-Valencia & Javier Perote, 2016. "The productivity of top researchers: a semi-nonparametric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(2), pages 891-915, November.
    18. Wen, Guanghui & Duan, Zhisheng & Chen, Guanrong & Geng, Xianmin, 2011. "A weighted local-world evolving network model with aging nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 4012-4026.
    19. Wu, Tao & Guo, Yuxiao & Chen, Leiting & Liu, Yanbing, 2016. "Integrated structure investigation in complex networks by label propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 68-80.
    20. Adilson Vital & Diego R. Amancio, 2022. "A comparative analysis of local similarity metrics and machine learning approaches: application to link prediction in author citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 6011-6028, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:12:p:3533-3539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.