IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v565y2021ics0378437120308049.html
   My bibliography  Save this article

Visualizing complex networks by leveraging community structures

Author

Listed:
  • Huang, Zhenhua
  • Wu, Junxian
  • Zhu, Wentao
  • Wang, Zhenyu
  • Mehrotra, Sharad
  • Zhao, Yangyang

Abstract

Layout algorithms provide an intuitive way of visualizing and understanding complex networks. Complex networks such as social networks, coauthorship networks, and protein interaction networks often display community structures. Existing network visualization methods that are mostly based on force-directed algorithms do not fully exploit community structures, leading to layouts with intertwined nodes/edges or “hairball” issues, especially when the size and complexity of networks increase. This paper generalizes the force-directed framework and proposes a new method for network visualization exploiting community structures. The approach, entitled GRA (Generalized Repulsive and Attractive algorithm), first discovers communities using community detection mechanisms and then computes weighted repulsive and attractive forces between intra- and inter-community nodes. GRA simulates the nodes in a network as particles and moves them based on repulsive and attractive forces until convergence. The method is also extended to visualize larger-scale graphs by using detected communities to compress the original graph. To quantify the effectiveness of network visualization, an area estimation method based on a multivariate Gaussian distribution with noise tolerance is introduced. A layout with a high metric prevents the visualization from entanglement while making as much full use of the canvas space as possible. Case studies on complex networks of various types and sizes demonstrate that GRA achieves state-of-the-art performance and facilitates complex network analysis.

Suggested Citation

  • Huang, Zhenhua & Wu, Junxian & Zhu, Wentao & Wang, Zhenyu & Mehrotra, Sharad & Zhao, Yangyang, 2021. "Visualizing complex networks by leveraging community structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
  • Handle: RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308049
    DOI: 10.1016/j.physa.2020.125506
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120308049
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    2. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    3. Shen, Huawei & Cheng, Xueqi & Cai, Kai & Hu, Mao-Bin, 2009. "Detect overlapping and hierarchical community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1706-1712.
    4. Mathieu Jacomy & Tommaso Venturini & Sebastien Heymann & Mathieu Bastian, 2014. "ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    2. Wu, Jianshe & Wang, Xiaohua & Jiao, Licheng, 2012. "Synchronization on overlapping community network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 508-514.
    3. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    4. Fu, Xianghua & Liu, Liandong & Wang, Chao, 2013. "Detection of community overlap according to belief propagation and conflict," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 941-952.
    5. Hao Xu & Yuan Ran & Junqian Xing & Li Tao, 2023. "An Influence-Based Label Propagation Algorithm for Overlapping Community Detection," Mathematics, MDPI, vol. 11(9), pages 1-17, May.
    6. Wu, Tao & Guo, Yuxiao & Chen, Leiting & Liu, Yanbing, 2016. "Integrated structure investigation in complex networks by label propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 68-80.
    7. Zhou, Xu & Liu, Yanheng & Zhang, Jindong & Liu, Tuming & Zhang, Di, 2015. "An ant colony based algorithm for overlapping community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 289-301.
    8. Mu, Caihong & Liu, Yong & Liu, Yi & Wu, Jianshe & Jiao, Licheng, 2014. "Two-stage algorithm using influence coefficient for detecting the hierarchical, non-overlapping and overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 47-61.
    9. Eustace, Justine & Wang, Xingyuan & Cui, Yaozu, 2015. "Community detection using local neighborhood in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 665-677.
    10. Zhou, Xu & Liu, Yanheng & Wang, Jian & Li, Chun, 2017. "A density based link clustering algorithm for overlapping community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 65-78.
    11. Tzai-Hung Wen & Wei Chien Benny Chin, 2015. "Incorporation of Spatial Interactions in Location Networks to Identify Critical Geo-Referenced Routes for Assessing Disease Control Measures on a Large-Scale Campus," IJERPH, MDPI, vol. 12(4), pages 1-15, April.
    12. Cui, Yaozu & Wang, Xingyuan, 2016. "Detecting one-mode communities in bipartite networks by bipartite clustering triangular," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 307-315.
    13. Gui, Chun & Zhang, Ruisheng & Hu, Rongjing & Huang, Guoming & Wei, Jiaxuan, 2018. "Overlapping communities detection based on spectral analysis of line graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 50-65.
    14. Ren, Fu-Xin & Shen, Hua-Wei & Cheng, Xue-Qi, 2012. "Modeling the clustering in citation networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3533-3539.
    15. Shang, Ronghua & Luo, Shuang & Li, Yangyang & Jiao, Licheng & Stolkin, Rustam, 2015. "Large-scale community detection based on node membership grade and sub-communities integration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 279-294.
    16. Jorge Peña & Yannick Rochat, 2012. "Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    17. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    18. Ying Song & Zhiwen Zheng & Yunmei Shi & Bo Wang, 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks," Mathematics, MDPI, vol. 11(15), pages 1-16, July.
    19. Zhang, Zhiwei & Wang, Zhenyu, 2015. "Mining overlapping and hierarchical communities in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 25-33.
    20. Masa Tsuchiya & Vincent Piras & Alessandro Giuliani & Masaru Tomita & Kumar Selvarajoo, 2010. "Collective Dynamics of Specific Gene Ensembles Crucial for Neutrophil Differentiation: The Existence of Genome Vehicles Revealed," PLOS ONE, Public Library of Science, vol. 5(8), pages 1-10, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.