IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i9p2124-d1137256.html
   My bibliography  Save this article

On the Class of Risk Neutral Densities under Heston’s Stochastic Volatility Model for Option Valuation

Author

Listed:
  • Benzion Boukai

    (Department of Mathematical Sciences, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA)

Abstract

The celebrated Heston’s stochastic volatility (SV) model for the valuation of European options provides closed form solutions that are given in terms of characteristic functions. However, the numerical calibration of this five-parameter model, which is based on market option data, often remains a daunting task. In this paper, we provide a theoretical solution to the long-standing ‘open problem’ of characterizing the class of risk neutral distributions (RNDs), if any, that satisfy Heston’s SV for option valuation. We prove that the class of scale parameter distributions with mean being the forward spot price satisfies Heston’s solution. Thus, we show that any member of this class could be used for the direct risk neutral valuation of option prices under Heston’s stochastic volatility model. In fact, we also show that any RND with mean being the forward spot price that satisfies Heston’s option valuation solution must also be a member of the scale family of distributions in that mean. As particular examples, we show that under a certain re-parametrization, the one-parameter versions of the log-normal (i.e., Black–Scholes), gamma, and Weibull distributions, along with their respective inverses, are all members of this class and thus, provide explicit RNDs for direct option pricing under Heston’s SV model. We demonstrate the applicability and suitability of these explicit RNDs via exact calculations and Monte Carlo simulations, using already published index data and a calibrated Heston’s model (S&P500, ODAX), as well as an illustration based on recent option market data (AMD).

Suggested Citation

  • Benzion Boukai, 2023. "On the Class of Risk Neutral Densities under Heston’s Stochastic Volatility Model for Option Valuation," Mathematics, MDPI, vol. 11(9), pages 1-22, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2124-:d:1137256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/9/2124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/9/2124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    2. Bakshi, Gurdip S. & Zhiwu, Chen, 1997. "An alternative valuation model for contingent claims," Journal of Financial Economics, Elsevier, vol. 44(1), pages 123-165, April.
    3. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    4. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    5. Ben Boukai, 2021. "On the RND under Heston's stochastic volatility model," Papers 2101.03626, arXiv.org.
    6. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    7. Kanniainen, Juho & Piché, Robert, 2013. "Stock price dynamics and option valuations under volatility feedback effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 722-740.
    8. Ben Boukai, 2021. "The Generalized Gamma distribution as a useful RND under Heston's stochastic volatility model," Papers 2108.07937, arXiv.org, revised Aug 2021.
    9. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    10. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    11. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    12. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    13. Damien Ackerer & Damir Filipović, 2020. "Option pricing with orthogonal polynomial expansions," Mathematical Finance, Wiley Blackwell, vol. 30(1), pages 47-84, January.
    14. Chen, An-Sing & Leung, Mark T., 2005. "Modeling time series information into option prices: An empirical evaluation of statistical projection and GARCH option pricing model," Journal of Banking & Finance, Elsevier, vol. 29(12), pages 2947-2969, December.
    15. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    16. Hu, May & Park, Jason, 2019. "Valuation of collateralized debt obligations: An equilibrium model," Economic Modelling, Elsevier, vol. 82(C), pages 119-135.
    17. Chang, Carolyn W. & S.K. Chang, Jack & Lim, Kian-Guan, 1998. "Information-time option pricing: theory and empirical evidence," Journal of Financial Economics, Elsevier, vol. 48(2), pages 211-242, May.
    18. Alexander Lipton & Artur Sepp, 2022. "Toward an efficient hybrid method for pricing barrier options on assets with stochastic volatility," Papers 2202.07849, arXiv.org.
    19. Huang, Yu Chuan & Chen, Shing Chun, 2002. "Warrants pricing: Stochastic volatility vs. Black-Scholes," Pacific-Basin Finance Journal, Elsevier, vol. 10(4), pages 393-409, September.
    20. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:9:p:2124-:d:1137256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.