IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i8p1845-d1122518.html
   My bibliography  Save this article

Analytical Design of Optimal Model Predictive Control and Its Application in Small-Scale Helicopters

Author

Listed:
  • Weijun Hu

    (School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China)

  • Jiale Quan

    (School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China)

  • Xianlong Ma

    (School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China)

  • Mostafa M. Salah

    (Electrical Engineering Department, Future University in Egypt, Cairo 11835, Egypt)

  • Ahmed Shaker

    (Engineering Physics and Mathematics Department, Faculty of Engineering, Ain Shams University, Cairo 11535, Egypt)

Abstract

A new method for controlling the position and speed of a small-scale helicopter based on optimal model predictive control is presented in this paper. In the proposed method, the homotopy perturbation technique is used to analytically solve the optimization problem and, as a result, to find the control signal. To assess the proposed method, a small-scale helicopter system is modeled and controlled using the proposed method. The proposed method has been investigated under different conditions and its results have been compared with the conventional predictive control method. The simulation results show that the proposed technique is highly proficient in the face of various uncertainties and disturbances, and can quickly return the helicopter to its path.

Suggested Citation

  • Weijun Hu & Jiale Quan & Xianlong Ma & Mostafa M. Salah & Ahmed Shaker, 2023. "Analytical Design of Optimal Model Predictive Control and Its Application in Small-Scale Helicopters," Mathematics, MDPI, vol. 11(8), pages 1-15, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1845-:d:1122518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/8/1845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/8/1845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Shanlin & Niu, Ben & Zong, Guangdeng & Zhao, Xudong & Xu, Ning, 2022. "Adaptive fixed-time hierarchical sliding mode control for switched under-actuated systems with dead-zone constraints via event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    2. Hengzhan Yang & Dian Xi & Xu Weng & Fucai Qian & Bo Tan, 2022. "A Numerical Algorithm for Self-Learning Model Predictive Control in Servo Systems," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
    3. Rahmat Aazami & Omid Heydari & Jafar Tavoosi & Mohammadamin Shirkhani & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    4. Saeed Danyali & Omid Aghaei & Mohammadamin Shirkhani & Rahmat Aazami & Jafar Tavoosi & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "A New Model Predictive Control Method for Buck-Boost Inverter-Based Photovoltaic Systems," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    5. Haifeng Huang & Mohammadamin Shirkhani & Jafar Tavoosi & Omar Mahmoud, 2022. "A New Intelligent Dynamic Control Method for a Class of Stochastic Nonlinear Systems," Mathematics, MDPI, vol. 10(9), pages 1-15, April.
    6. Yulin Li & Ben Niu & Guangdeng Zong & Jinfeng Zhao & Xudong Zhao, 2022. "Command filter-based adaptive neural finite-time control for stochastic nonlinear systems with time-varying full-state constraints and asymmetric input saturation," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(1), pages 199-221, January.
    7. Xinlan Guo & Mohammadamin Shirkhani & Emad M. Ahmed, 2022. "Machine-Learning-Based Improved Smith Predictive Control for MIMO Processes," Mathematics, MDPI, vol. 10(19), pages 1-19, October.
    8. Si, Zhiyuan & Yang, Ming & Yu, Yixiao & Ding, Tingting, 2021. "Photovoltaic power forecast based on satellite images considering effects of solar position," Applied Energy, Elsevier, vol. 302(C).
    9. Mohamed El-Sayed M. Essa & Mahmoud Elsisi & Mohamed Saleh Elsayed & Mohamed Fawzy Ahmed & Ahmed M. Elshafeey, 2022. "An Improvement of Model Predictive for Aircraft Longitudinal Flight Control Based on Intelligent Technique," Mathematics, MDPI, vol. 10(19), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan Gu & Encheng Chi & Chujia Guo & Mostafa M. Salah & Ahmed Shaker, 2023. "A New Self-Tuning Deep Neuro-Sliding Mode Control for Multi-Machine Power System Stabilizer," Mathematics, MDPI, vol. 11(7), pages 1-18, March.
    2. Ye Wang & Zhaiaibai Ma & Mostafa M. Salah & Ahmed Shaker, 2023. "An Evolutionarily Based Type-2 Fuzzy-PID for Multi-Machine Power System Stabilization," Mathematics, MDPI, vol. 11(11), pages 1-18, May.
    3. Xin Xu & Ahmed Shaker & Marwa S. Salem, 2022. "Automatic Control of a Mobile Manipulator Robot Based on Type-2 Fuzzy Sliding Mode Technique," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    4. Lingqin Xia & Guang Chen & Tao Wu & Yu Gao & Ardashir Mohammadzadeh & Ebrahim Ghaderpour, 2022. "Optimal Intelligent Control for Doubly Fed Induction Generators," Mathematics, MDPI, vol. 11(1), pages 1-16, December.
    5. Xinlan Guo & Mohammadamin Shirkhani & Emad M. Ahmed, 2022. "Machine-Learning-Based Improved Smith Predictive Control for MIMO Processes," Mathematics, MDPI, vol. 10(19), pages 1-19, October.
    6. Md Tahmid Hussain & Adil Sarwar & Mohd Tariq & Shabana Urooj & Amal BaQais & Md. Alamgir Hossain, 2023. "An Evaluation of ANN Algorithm Performance for MPPT Energy Harvesting in Solar PV Systems," Sustainability, MDPI, vol. 15(14), pages 1-36, July.
    7. Mahsa Dehghan Manshadi & Milad Mousavi & M. Soltani & Amir Mosavi & Levente Kovacs, 2022. "Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System," Energies, MDPI, vol. 15(24), pages 1-16, December.
    8. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    9. Liu, Shanlin & Niu, Ben & Karimi, Hamid Reza & Zhao, Xudong, 2024. "Self-triggered fixed-time bipartite fault-tolerant consensus for nonlinear multiagent systems with function constraints on states," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    10. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    11. Jiabao Gu & Hui Wang & Wuquan Li & Ben Niu, 2022. "Adaptive State-Feedback Stabilization for Stochastic Nonlinear Systems with Time-Varying Powers and Unknown Covariance," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    12. Zhao, He & Huang, Xiaoqiao & Xiao, Zenan & Shi, Haoyuan & Li, Chengli & Tai, Yonghang, 2024. "Week-ahead hourly solar irradiation forecasting method based on ICEEMDAN and TimesNet networks," Renewable Energy, Elsevier, vol. 220(C).
    13. Yaqiong Ding & Hanguang Jia & Yunong Zhang & Binbin Qiu, 2023. "High-Order Modeling, Zeroing Dynamics Control, and Perturbations Rejection for Non-Linear Double-Holding Water Tank," Mathematics, MDPI, vol. 11(13), pages 1-18, July.
    14. Libo Yang & Mei Guo & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "Taylor Series-Based Fuzzy Model Predictive Control for Wheeled Robots," Mathematics, MDPI, vol. 10(14), pages 1-13, July.
    15. Paletta, Quentin & Arbod, Guillaume & Lasenby, Joan, 2023. "Omnivision forecasting: Combining satellite and sky images for improved deterministic and probabilistic intra-hour solar energy predictions," Applied Energy, Elsevier, vol. 336(C).
    16. Saeed Danyali & Omid Aghaei & Mohammadamin Shirkhani & Rahmat Aazami & Jafar Tavoosi & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "A New Model Predictive Control Method for Buck-Boost Inverter-Based Photovoltaic Systems," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    17. Khanh Hieu Nguyen & Sung Hyun Kim, 2022. "Event-Triggered Non-PDC Filter Design of Fuzzy Markovian Jump Systems under Mismatch Phenomena," Mathematics, MDPI, vol. 10(16), pages 1-25, August.
    18. Ahmad Taher Azar & Farah Ayad Abdul-Majeed & Hasan Sh. Majdi & Ibrahim A. Hameed & Nashwa Ahmad Kamal & Anwar Jaafar Mohamad Jawad & Ali Hashim Abbas & Wameedh Riyadh Abdul-Adheem & Ibraheem Kasim Ibr, 2022. "Parameterization of a Novel Nonlinear Estimator for Uncertain SISO Systems with Noise Scenario," Mathematics, MDPI, vol. 10(13), pages 1-17, June.
    19. Jinxia Wu & Pengfei Cui, 2024. "Cooperative Adaptive Fuzzy Control for the Synchronization of Nonlinear Multi-Agent Systems under Input Saturation," Mathematics, MDPI, vol. 12(10), pages 1-14, May.
    20. Yantao Wang & Yinhan Zhang & Xuesong Qi & Meiqi Wang & Xinyue Wang, 2023. "A Bi-Level Optimization Model for Virtual Power Plant Membership Selection Considering Load Time Series," Sustainability, MDPI, vol. 15(3), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1845-:d:1122518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.