IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2989-d1186824.html
   My bibliography  Save this article

High-Order Modeling, Zeroing Dynamics Control, and Perturbations Rejection for Non-Linear Double-Holding Water Tank

Author

Listed:
  • Yaqiong Ding

    (School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China)

  • Hanguang Jia

    (National Key Laboratory of Science and Technology on Reliability Physics and Application of Electronic Component, The Fifth Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 511370, China)

  • Yunong Zhang

    (School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China)

  • Binbin Qiu

    (School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518057, China)

Abstract

The double-holding water tank system is a common non-linear control system that plays a crucial role in process control in the chemical industry. It consists of two cylindrical glass containers: the preset tank and the main tank. The main challenge in controlling this system is adjusting the main control valve to ensure that the actual liquid level of the main tank tracks the desired liquid level. This paper explores the zeroing dynamics (ZD) method and its application in tracking control. A non-linear model is developed for the double-holding water tank system, and the ZD method is used to design an effective controller (called the ZD controller) for tracking control. Additionally, the robustness of the double-holding water tank system in the presence of time-varying perturbations is investigated. In order to substantiate the effectiveness and robustness of the ZD controller, simulation experiments on four different tracking trajectories corresponding to four different practical situations, as well as an extra simulation experiment considering time-varying perturbations, are conducted. Furthermore, a comparative simulation experiment based on the backstepping method is conducted. The presented results successfully illustrate the feasibility and effectiveness of the ZD method for the tracking control of double-holding water tank systems.

Suggested Citation

  • Yaqiong Ding & Hanguang Jia & Yunong Zhang & Binbin Qiu, 2023. "High-Order Modeling, Zeroing Dynamics Control, and Perturbations Rejection for Non-Linear Double-Holding Water Tank," Mathematics, MDPI, vol. 11(13), pages 1-18, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2989-:d:1186824
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2989/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2989/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haifeng Huang & Mohammadamin Shirkhani & Jafar Tavoosi & Omar Mahmoud, 2022. "A New Intelligent Dynamic Control Method for a Class of Stochastic Nonlinear Systems," Mathematics, MDPI, vol. 10(9), pages 1-15, April.
    2. Aleksey Antipov & Svetlana Krasnova & Victor Utkin, 2021. "Methods of Ensuring Invariance with Respect to External Disturbances: Overview and New Advances," Mathematics, MDPI, vol. 9(23), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiabao Gu & Hui Wang & Wuquan Li & Ben Niu, 2022. "Adaptive State-Feedback Stabilization for Stochastic Nonlinear Systems with Time-Varying Powers and Unknown Covariance," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    2. Libo Yang & Mei Guo & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "Taylor Series-Based Fuzzy Model Predictive Control for Wheeled Robots," Mathematics, MDPI, vol. 10(14), pages 1-13, July.
    3. Saeed Danyali & Omid Aghaei & Mohammadamin Shirkhani & Rahmat Aazami & Jafar Tavoosi & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "A New Model Predictive Control Method for Buck-Boost Inverter-Based Photovoltaic Systems," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    4. Khanh Hieu Nguyen & Sung Hyun Kim, 2022. "Event-Triggered Non-PDC Filter Design of Fuzzy Markovian Jump Systems under Mismatch Phenomena," Mathematics, MDPI, vol. 10(16), pages 1-25, August.
    5. Ye Wang & Zhaiaibai Ma & Mostafa M. Salah & Ahmed Shaker, 2023. "An Evolutionarily Based Type-2 Fuzzy-PID for Multi-Machine Power System Stabilization," Mathematics, MDPI, vol. 11(11), pages 1-18, May.
    6. Ruitao Wang & Hui Wang & Wuquan Li & Ben Niu, 2022. "Output Tracking Control of Random Nonlinear Time-Varying Systems," Mathematics, MDPI, vol. 10(14), pages 1-13, July.
    7. Weijun Hu & Jiale Quan & Xianlong Ma & Mostafa M. Salah & Ahmed Shaker, 2023. "Analytical Design of Optimal Model Predictive Control and Its Application in Small-Scale Helicopters," Mathematics, MDPI, vol. 11(8), pages 1-15, April.
    8. Rahmat Aazami & Omid Heydari & Jafar Tavoosi & Mohammadamin Shirkhani & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
    9. Mohammad Soleimani Amiri & Rizauddin Ramli, 2022. "Utilisation of Initialised Observation Scheme for Multi-Joint Robotic Arm in Lyapunov-Based Adaptive Control Strategy," Mathematics, MDPI, vol. 10(17), pages 1-14, August.
    10. Anton V. Utkin & Victor A. Utkin & Svetlana A. Krasnova, 2022. "Synthesis of a Control System for a Waste Heat Boiler with Forced Circulation under Restrictions on Control Actions," Mathematics, MDPI, vol. 10(14), pages 1-24, July.
    11. Xinlan Guo & Mohammadamin Shirkhani & Emad M. Ahmed, 2022. "Machine-Learning-Based Improved Smith Predictive Control for MIMO Processes," Mathematics, MDPI, vol. 10(19), pages 1-19, October.
    12. Wei Xu & Dillip Kumar Das & Željko Stević & Marko Subotić & Adel F. Alrasheedi & Shiru Sun, 2023. "Trapezoidal Interval Type-2 Fuzzy PIPRECIA-MARCOS Model for Management Efficiency of Traffic Flow on Observed Road Sections," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
    13. Chan Gu & Encheng Chi & Chujia Guo & Mostafa M. Salah & Ahmed Shaker, 2023. "A New Self-Tuning Deep Neuro-Sliding Mode Control for Multi-Machine Power System Stabilizer," Mathematics, MDPI, vol. 11(7), pages 1-18, March.
    14. Natalia Bakhtadze, 2023. "Preface to the Special Issue on “Identification, Knowledge Engineering and Digital Modeling for Adaptive and Intelligent Control”—Special Issue Book," Mathematics, MDPI, vol. 11(8), pages 1-3, April.
    15. Xin Xu & Ahmed Shaker & Marwa S. Salem, 2022. "Automatic Control of a Mobile Manipulator Robot Based on Type-2 Fuzzy Sliding Mode Technique," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    16. Dong Zhao & Shuyan Sun & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "Adaptive Intelligent Model Predictive Control for Microgrid Load Frequency," Sustainability, MDPI, vol. 14(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2989-:d:1186824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.