IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1630-d1109354.html
   My bibliography  Save this article

Fractional-Modified Bessel Function of the First Kind of Integer Order

Author

Listed:
  • Andrés Martín

    (Faculty of Science, University of Zaragoza, Pedro Cerbuna, 50009 Zaragoza, Spain)

  • Ernesto Estrada

    (Institute of Interdisciplinary Physics and Complex Systems (IFISC), 07122 Palma de Mallorca, Spain)

Abstract

The modified Bessel function (MBF) of the first kind is a fundamental special function in mathematics with applications in a large number of areas. When the order of this function is integer, it has an integral representation which includes the exponential of the cosine function. Here, we generalize this MBF to include a fractional parameter, such that the exponential in the previously mentioned integral is replaced by a Mittag–Leffler function. The necessity for this generalization arises from a problem of communication in networks. We find the power series representation of the fractional MBF of the first kind as well as some differential properties. We give some examples of its utility in graph/networks analysis and mention some fundamental open problems for further investigation.

Suggested Citation

  • Andrés Martín & Ernesto Estrada, 2023. "Fractional-Modified Bessel Function of the First Kind of Integer Order," Mathematics, MDPI, vol. 11(7), pages 1-13, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1630-:d:1109354
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1630/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert, Christian, 1990. "Modified Bessel functions and their applications in probability and statistics," Statistics & Probability Letters, Elsevier, vol. 9(2), pages 155-161, February.
    2. Zhen-Hang Yang & Jing-Feng Tian & Ya-Ru Zhu, 2020. "New Sharp Bounds for the Modified Bessel Function of the First Kind and Toader-Qi Mean," Mathematics, MDPI, vol. 8(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Árpád Baricz & Dragana Jankov Maširević & Tibor K. Pogány, 2021. "Approximation of CDF of Non-Central Chi-Square Distribution by Mean-Value Theorems for Integrals," Mathematics, MDPI, vol. 9(2), pages 1-12, January.
    2. Marchand, Éric & Perron, François, 2002. "On the minimax estimator of a bounded normal mean," Statistics & Probability Letters, Elsevier, vol. 58(4), pages 327-333, July.
    3. Jan Beran & Britta Steffens & Sucharita Ghosh, 2022. "On nonparametric regression for bivariate circular long-memory time series," Statistical Papers, Springer, vol. 63(1), pages 29-52, February.
    4. Marchand, Éric & Perron, François, 2005. "Improving on the mle of a bounded location parameter for spherical distributions," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 227-238, February.
    5. Muhey U. Din & Mohsan Raza & Qin Xin & Sibel Yalçin & Sarfraz Nawaz Malik, 2022. "Close-to-Convexity of q -Bessel–Wright Functions," Mathematics, MDPI, vol. 10(18), pages 1-12, September.
    6. Fourdrinier, Dominique & Marchand, Éric, 2010. "On Bayes estimators with uniform priors on spheres and their comparative performance with maximum likelihood estimators for estimating bounded multivariate normal means," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1390-1399, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1630-:d:1109354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.