IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p901-d366530.html
   My bibliography  Save this article

New Sharp Bounds for the Modified Bessel Function of the First Kind and Toader-Qi Mean

Author

Listed:
  • Zhen-Hang Yang

    (Engineering Research Center of Intelligent Computing for Complex Energy Systems of Ministry of Education, North China Electric Power University, Yonghua Street 619, Baoding 071003, China
    Zhejiang Society for Electric Power, Hangzhou 310014, China)

  • Jing-Feng Tian

    (Department of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, China)

  • Ya-Ru Zhu

    (Department of Mathematics and Physics, North China Electric Power University, Yonghua Street 619, Baoding 071003, China)

Abstract

Let I v x be he modified Bessel function of the first kind of order v . We prove the double inequality sinh t t cosh 1 / q q t < I 0 t < sinh t t cosh 1 / p p t holds for t > 0 if and only if p ≥ 2 / 3 and q ≤ ln 2 / ln π . The corresponding inequalities for means improve already known results.

Suggested Citation

  • Zhen-Hang Yang & Jing-Feng Tian & Ya-Ru Zhu, 2020. "New Sharp Bounds for the Modified Bessel Function of the First Kind and Toader-Qi Mean," Mathematics, MDPI, vol. 8(6), pages 1-13, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:901-:d:366530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Miao-Kun & Chu, Yu-Ming & Song, Ying-Qing, 2016. "Asymptotical formulas for Gaussian and generalized hypergeometric functions," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 44-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhey U. Din & Mohsan Raza & Qin Xin & Sibel Yalçin & Sarfraz Nawaz Malik, 2022. "Close-to-Convexity of q -Bessel–Wright Functions," Mathematics, MDPI, vol. 10(18), pages 1-12, September.
    2. Andrés Martín & Ernesto Estrada, 2023. "Fractional-Modified Bessel Function of the First Kind of Integer Order," Mathematics, MDPI, vol. 11(7), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhen-Hang & Chu, Yu-Ming & Zhang, Wen, 2019. "High accuracy asymptotic bounds for the complete elliptic integral of the second kind," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 552-564.
    2. Mansour Mahmoud & Hanan Almuashi, 2024. "Two Approximation Formulas for Gamma Function with Monotonic Remainders," Mathematics, MDPI, vol. 12(5), pages 1-15, February.
    3. Tie-Hong Zhao & Wei-Mao Qian & Yu-Ming Chu, 2022. "On approximating the arc lemniscate functions," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(2), pages 316-329, June.
    4. Ling Zhu, 2022. "A Natural Approximation to the Complete Elliptic Integral of the First Kind," Mathematics, MDPI, vol. 10(9), pages 1-8, April.
    5. Ling Zhu, 2022. "New Lower Bound for the Generalized Elliptic Integral of the First Kind," Mathematics, MDPI, vol. 10(9), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:901-:d:366530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.