IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1542-d1104112.html
   My bibliography  Save this article

Optimized Cooperative Control of Error Port-Controlled Hamiltonian and Adaptive Backstepping Sliding Mode for a Multi-Joint Industrial Robot

Author

Listed:
  • Xiaoyu Yang

    (College of Automation, Qingdao University, Qingdao 266071, China
    Shandong Province Key Laboratory of Industrial Control Technology, Qingdao 266071, China)

  • Haisheng Yu

    (College of Automation, Qingdao University, Qingdao 266071, China
    Shandong Province Key Laboratory of Industrial Control Technology, Qingdao 266071, China)

Abstract

Robot joints driven by permanent magnet synchronous motors (PMSM) often cannot have both superior accuracy and rapidity when they track target signals. The robot joints have fine dynamic characteristics and poor steady-state characteristics when the signal controller is used, or they have fine steady-state characteristics and poor dynamic characteristics when the energy controller is used. It is hard to make robot joints that have both superior dynamic and steady-state characteristics at once using a single control method. In order to solve this problem, the strategy of optimized cooperative control is proposed. First, an error port-controlled Hamiltonian (EPCH) energy controller and an adaptive backstepping sliding mode (ABSM) signal controller are designed. Second, an optimized cooperative control coefficient based on the position error of a robot joint is designed; this enables the system to switch smoothly between the EPCH energy controller and ABSM signal controller. Next, the strategy of optimized cooperative control is designed. In this way, robot systems can combine the advantages of the EPCH energy controller and the ABSM signal controller. Finally, simulation results demonstrate that using the strategy of optimized cooperative control gives robot joints outstanding control performance in terms of tracking accuracy and response rapidity.

Suggested Citation

  • Xiaoyu Yang & Haisheng Yu, 2023. "Optimized Cooperative Control of Error Port-Controlled Hamiltonian and Adaptive Backstepping Sliding Mode for a Multi-Joint Industrial Robot," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1542-:d:1104112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luis Arturo Soriano & José de Jesús Rubio & Eduardo Orozco & Daniel Andres Cordova & Genaro Ochoa & Ricardo Balcazar & David Ricardo Cruz & Jesus Alberto Meda-Campaña & Alejandro Zacarias & Guadalupe , 2021. "Optimization of Sliding Mode Control to Save Energy in a SCARA Robot," Mathematics, MDPI, vol. 9(24), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Li & Liang Wang, 2022. "Kinematic Model and Redundant Space Analysis of 4-DOF Redundant Robot," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    2. Andrej Sarjaš & Dušan Gleich, 2022. "Toward Embedded System Resources Relaxation Based on the Event-Triggered Feedback Control Approach," Mathematics, MDPI, vol. 10(4), pages 1-18, February.
    3. Hu, Yifan & Liu, Wenhui & Liu, Guobao, 2022. "Adaptive finite‐time event‐triggered control for uncertain nonlinearly parameterized systems with unknown control direction and actuator failures," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    4. Li, Jinghan & Zhao, Jun, 2022. "Bumpless transfer based event-triggered control for switched linear systems with state-dependent switching," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    5. Xiaodong Lv & Guangming Zhang & Gang Wang & Mingxiang Zhu & Zhihan Shi & Zhiqing Bai & Igor V. Alexandrov, 2022. "Numerical Analyses and a Nonlinear Composite Controller for a Real-Time Ground Aerodynamic Heating Simulation of a Hypersonic Flying Object," Mathematics, MDPI, vol. 10(16), pages 1-35, August.
    6. Amin Najafi & Mai The Vu & Saleh Mobayen & Jihad H. Asad & Afef Fekih, 2022. "Adaptive Barrier Fast Terminal Sliding Mode Actuator Fault Tolerant Control Approach for Quadrotor UAVs," Mathematics, MDPI, vol. 10(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1542-:d:1104112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.