IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v430y2022ics0096300322003708.html
   My bibliography  Save this article

Bumpless transfer based event-triggered control for switched linear systems with state-dependent switching

Author

Listed:
  • Li, Jinghan
  • Zhao, Jun

Abstract

This paper investigates the bumpless transfer based event-triggered control problem of switched linear systems. A description of the event-triggered bumpless transfer performance for switched linear systems is first proposed, which can reduce the control bumps caused by both switches and triggers. The bumpless transfer dependent event-triggered strategy is given, in order to obtain better bumpless transfer performance. Then, a state-dependent switching law, an event-triggered mechanism and the controller are jointly designed to ensure stability of the closed-loop system by the multiple Lyapunov functions method, and a sufficient condition for the performance of the event-triggered bumpless transfer is obtained. Furthermore, Zeno behavior is excluded by providing a positive lower bound on the intervals of the event triggering. Simulation examples of the control design including a railway system model and a turban model are presented to verify the effectiveness of the developed approach.

Suggested Citation

  • Li, Jinghan & Zhao, Jun, 2022. "Bumpless transfer based event-triggered control for switched linear systems with state-dependent switching," Applied Mathematics and Computation, Elsevier, vol. 430(C).
  • Handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003708
    DOI: 10.1016/j.amc.2022.127296
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322003708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Bin & Hill, David J. & Sun, Zhijie, 2018. "Input-to-state-KL-stability and criteria for a class of hybrid dynamical systems," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 124-140.
    2. Li, Shuo & Xiang, Zhengrong, 2020. "Positivity, exponential stability and disturbance attenuation performance for singular switched positive systems with time-varying distributed delays," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    3. Jun Cheng & Hong Zhu & Shouming Zhong & Yuping Zhang, 2012. "Robust Stability of Switched Delay Systems with Average Dwell Time under Asynchronous Switching," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-17, October.
    4. Xiao, Xiaoqing & Park, Ju H. & Zhou, Lei, 2018. "Event-triggered control of discrete-time switched linear systems with packet losses," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 344-352.
    5. Luis Arturo Soriano & José de Jesús Rubio & Eduardo Orozco & Daniel Andres Cordova & Genaro Ochoa & Ricardo Balcazar & David Ricardo Cruz & Jesus Alberto Meda-Campaña & Alejandro Zacarias & Guadalupe , 2021. "Optimization of Sliding Mode Control to Save Energy in a SCARA Robot," Mathematics, MDPI, vol. 9(24), pages 1-16, December.
    6. Ju, Yanhao & Sun, Yuangong & Meng, Fanwei, 2020. "Stabilization of switched positive system with impulse and marginally stable subsystems: A mode-dependent dwell time method," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Gengjiao, 2024. "The positivity and event-triggered stabilization of Takagi-Sugeno fuzzy systems with actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 473(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Qunxian & Xu, Shengyuan & Zhang, Zhengqiang, 2020. "Nonfragile H∞ observer design for uncertain nonlinear switched systems with quantization," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Guo, Yaxiao & Li, Junmin & Duan, Ruirui, 2021. "Extended dissipativity-based control for persistent dwell-time switched singularly perturbed systems and its application to electronic circuits," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    3. Kang, Yu & Zhang, Niankun & Chen, Guoyong, 2023. "Global exponential stability of impulsive switched positive nonlinear systems with mode-dependent impulses," Applied Mathematics and Computation, Elsevier, vol. 436(C).
    4. Sun, Yuangong & Tian, Yazhou, 2022. "Polynomial stability of positive switching homogeneous systems with different degrees," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    5. Bo Xu & Xiaoping Liu & Huanqing Wang & Yucheng Zhou, 2019. "Event-Triggered Adaptive Backstepping Control for Strict-Feedback Nonlinear Systems with Zero Dynamics," Complexity, Hindawi, vol. 2019, pages 1-13, October.
    6. Zhang, Jie & Sun, Yuangong, 2021. "Practical exponential stability of discrete-time switched linear positive systems with impulse and all modes unstable," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    7. Yu Li & Liang Wang, 2022. "Kinematic Model and Redundant Space Analysis of 4-DOF Redundant Robot," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    8. Xiaoyu Yang & Haisheng Yu, 2023. "Optimized Cooperative Control of Error Port-Controlled Hamiltonian and Adaptive Backstepping Sliding Mode for a Multi-Joint Industrial Robot," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    9. Andrej Sarjaš & Dušan Gleich, 2022. "Toward Embedded System Resources Relaxation Based on the Event-Triggered Feedback Control Approach," Mathematics, MDPI, vol. 10(4), pages 1-18, February.
    10. Zhou, Yu & Pan, Yingnan & Li, Shubo & Liang, Hongjing, 2020. "Event-triggered cooperative containment control for a class of uncertain non-identical networks," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    11. Long, Mingkang & Su, Housheng & Liu, Bo, 2019. "Second-order controllability of two-time-scale multi-agent systems," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 299-313.
    12. Jinlong Yuan & Jun Xie & Honglei Xu & Enmin Feng & Zhilong Xiu, 2019. "Optimization for Nonlinear Uncertain Switched Stochastic Systems with Initial State Difference in Batch Culture Process," Complexity, Hindawi, vol. 2019, pages 1-15, February.
    13. Wang, Zhe & Xue, Dingyu & Pan, Feng, 2021. "Observer-based robust control for singular switched fractional order systems subject to actuator saturation," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    14. Leipo Liu & Hao Xing & Xiangyang Cao & Zhumu Fu & Shuzhong Song, 2018. "Guaranteed Cost Finite-Time Control of Discrete-Time Positive Impulsive Switched Systems," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    15. Lü, Shao-Yu & Jin, Xiao-Zheng & Wu, Xiao-Ming & Ding, Li-Jian & Chi, Jing, 2022. "Robust adaptive event-triggered fault-tolerant control for time-varying systems against perturbations and faulty actuators," Applied Mathematics and Computation, Elsevier, vol. 426(C).
    16. Liu, Jason J.R. & Lam, James & Wang, Xiaomei & Kwok, Ka-Wai, 2023. "Non-fragile PD control of linear time-delay positive discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    17. Zhou, Lei & Ding, Hui & Xiao, Xiaoqing, 2021. "Input-to-state stability of discrete-time switched nonlinear systems with generalized switching signals," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    18. Liu, Yanhong & Zhi, Huimin & Wei, Jumei & Zhu, Xunlin & Zhu, Quanxin, 2020. "Event-triggered control for linear continuous switched singular systems," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    19. Hu, Yifan & Liu, Wenhui & Liu, Guobao, 2022. "Adaptive finite‐time event‐triggered control for uncertain nonlinearly parameterized systems with unknown control direction and actuator failures," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    20. Yang, Xueyan & Peng, Dongxue & Lv, Xiaoxiao & Li, Xiaodi, 2019. "Recent progress in impulsive control systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 244-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.