IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1428-d1098254.html
   My bibliography  Save this article

Mixed Convection in a Horizontal Channel–Cavity Arrangement with Different Heat Source Locations

Author

Listed:
  • Farhan Lafta Rashid

    (Department of Petroleum Engineering, College of Engineering, University of Kerbala, Karbala 56001, Iraq
    These authors contributed equally to this work and are co-first authors.)

  • Asseel M. Rasheed Al-Gaheeshi

    (Department of Electrical and Electronic Engineering, College of Engineering, University of Kerbala, Karbala 56001, Iraq)

  • Mohammed Alhwayzee

    (Department of Petroleum Engineering, College of Engineering, University of Kerbala, Karbala 56001, Iraq)

  • Bagh Ali

    (Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710129, China)

  • Nehad Ali Shah

    (Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
    These authors contributed equally to this work and are co-first authors.)

  • Jae Dong Chung

    (Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea)

Abstract

Several researchers are very interested in mixed convection heat transfer because of how widely it is used, particularly for solar thermal collectors, cooling electronic equipment, and chemical process instruments. Using COMSOL-Multiphysics, this article establishes laminar coupled mixed convection heat transfer characteristics across a horizontal channel–cavity architecture. Investigations are conducted into the effect of heat source location on isotherms, velocity distribution, pressure, temperature, average and local Nusselt numbers, and air density. The intake airflow Reynolds number is assumed constant on 2.8814. The enclosure with an isothermally heated right wall in the shape of a “<” as a heat source in three configurations (heat source in the base (1st case), in the upper step (2nd case), and the below step (3rd case). The obtained numerical results present that the higher heat transfer is performed in case two because the heat source is near the contact surface between the channel and the cavity. With the hot sources’ locations being altered, the velocity distribution seems to be unchanged. The increase in the positive y axis has no impact on the pressure distribution throughout the channel. Changing the position of the heated source does not seem to have any impact on the pressure distribution. Air density profiles start to diverge across cases around y = 0.035 m; the third example has a larger value than the second case, and the latter case has a larger value in the density distribution than the former. The contact between the enclosure and the channel (y = 0), where the greatest Nusselt number also occurs, exhibits the highest heat transfer. The maximal Nusselt number falls as y’s absolute value rises.

Suggested Citation

  • Farhan Lafta Rashid & Asseel M. Rasheed Al-Gaheeshi & Mohammed Alhwayzee & Bagh Ali & Nehad Ali Shah & Jae Dong Chung, 2023. "Mixed Convection in a Horizontal Channel–Cavity Arrangement with Different Heat Source Locations," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1428-:d:1098254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1428/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1428/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liang, Hongbo & You, Shijun & Zhang, Huan, 2016. "Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors," Energy, Elsevier, vol. 96(C), pages 37-47.
    2. Aissa Abderrahmane & Naef A. A. Qasem & Obai Younis & Riadh Marzouki & Abed Mourad & Nehad Ali Shah & Jae Dong Chung, 2022. "MHD Hybrid Nanofluid Mixed Convection Heat Transfer and Entropy Generation in a 3-D Triangular Porous Cavity with Zigzag Wall and Rotating Cylinder," Mathematics, MDPI, vol. 10(5), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Firas A. Alwawi & Feras M. Al Faqih & Mohammed Z. Swalmeh & Mohd Asrul Hery Ibrahim, 2022. "Combined Convective Energy Transmission Performance of Williamson Hybrid Nanofluid over a Cylindrical Shape with Magnetic and Radiation Impressions," Mathematics, MDPI, vol. 10(17), pages 1-19, September.
    2. Amit K. Bhakta & Nitesh K. Panday & Shailendra N. Singh, 2018. "Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube," Energies, MDPI, vol. 11(1), pages 1-15, January.
    3. Liang, Hongbo & Fan, Man & You, Shijun & Zheng, Wandong & Zhang, Huan & Ye, Tianzhen & Zheng, Xuejing, 2017. "A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 201(C), pages 60-68.
    4. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung, 2023. "Role of Nanofluid and Hybrid Nanofluid for Enhancing Thermal Conductivity towards Exponentially Stretching Curve with Modified Fourier Law Inspired by Melting Heat Effect," Mathematics, MDPI, vol. 11(5), pages 1-21, February.
    5. Liu, Shuaishuai & Yang, Bin & Hou, Yutian & Yu, Xiaohui, 2022. "Effects of geometric configurations on the thermal-mechanical properties of parabolic trough receivers based on coupled optical-thermal-stress model," Renewable Energy, Elsevier, vol. 199(C), pages 929-942.
    6. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Attaullah & Haroon Ur Rasheed, 2023. "Analysis of Error and Stability of Nanofluid over Horizontal Channel with Heat/Mass Transfer and Nonlinear Thermal Conductivity," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    7. Zou, Bin & Yao, Yang & Jiang, Yiqiang & Yang, Hongxing, 2018. "A new algorithm for obtaining the critical tube diameter and intercept factor of parabolic trough solar collectors," Energy, Elsevier, vol. 150(C), pages 451-467.
    8. Pengfei Zheng & Baolin Hou & Mingsong Zou, 2022. "Magnetorheological Fluid of High-Speed Unsteady Flow in a Narrow-Long Gap: An Unsteady Numerical Model and Analysis," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    9. Yılmaz, İbrahim Halil & Mwesigye, Aggrey, 2018. "Modeling, simulation and performance analysis of parabolic trough solar collectors: A comprehensive review," Applied Energy, Elsevier, vol. 225(C), pages 135-174.
    10. Hao, Menghao & Chen, Lizhi & Chen, Jianxun & Lu, Luyi & Li, Jianlan, 2022. "Safety and efficiency assessment of absorber with an initial offset in a parabolic trough collector," Renewable Energy, Elsevier, vol. 187(C), pages 774-789.
    11. Liang, Hongbo & Zhu, Chunguang & Fan, Man & You, Shijun & Zhang, Huan & Xia, Junbao, 2018. "Study on the thermal performance of a novel cavity receiver for parabolic trough solar collectors," Applied Energy, Elsevier, vol. 222(C), pages 790-798.
    12. Sivasankaran Sivanandam & Fouad O. M. Mallawi, 2022. "Effects of Variable Properties on the Convective Flow of Water near Its Density Extremum in an Inclined Enclosure with Entropy Generation," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    13. Moh Yaseen & Sawan Kumar Rawat & Nehad Ali Shah & Manoj Kumar & Sayed M. Eldin, 2023. "Ternary Hybrid Nanofluid Flow Containing Gyrotactic Microorganisms over Three Different Geometries with Cattaneo–Christov Model," Mathematics, MDPI, vol. 11(5), pages 1-25, March.
    14. Magdalena Piasecka & Beata Maciejewska & Artur Piasecki, 2023. "Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements," Energies, MDPI, vol. 16(3), pages 1-19, January.
    15. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Attaullah, 2023. "Role of Chemically Magnetized Nanofluid Flow for Energy Transition over a Porous Stretching Pipe with Heat Generation/Absorption and Its Stability," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    16. Song, Jifeng & Tong, Kai & Luo, Geng & Li, Lei, 2017. "Influence of non-ideal optical factors in actual engineering on the safety and stability of a parabolic trough collector," Renewable Energy, Elsevier, vol. 113(C), pages 1293-1301.
    17. Yang, Bin & Liu, Shuaishuai & Zhang, Ruirui & Yu, Xiaohui, 2022. "Influence of reflector installation errors on optical-thermal performance of parabolic trough collectors based on a MCRT - FVM coupled model," Renewable Energy, Elsevier, vol. 185(C), pages 1006-1017.
    18. Aichouba, Asma & Merzouk, Mustapha & Valenzuela, Loreto & Zarza, Eduardo & Kasbadji-Merzouk, Nachida, 2018. "Influence of the displacement of solar receiver tubes on the performance of a parabolic-trough collector," Energy, Elsevier, vol. 159(C), pages 472-481.
    19. Liu, Shuaishuai & Yang, Bin & Zhi, Yuan & Yu, Xiaohui, 2023. "Thermal-mechanical performance analysis of parabolic trough receivers under various optical errors based on coupled optical-thermal-stress model," Renewable Energy, Elsevier, vol. 210(C), pages 687-700.
    20. Zou, Bin & Jiang, Yiqiang & Yao, Yang & Yang, Hongxing, 2019. "Impacts of non-ideal optical factors on the performance of parabolic trough solar collectors," Energy, Elsevier, vol. 183(C), pages 1150-1165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1428-:d:1098254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.