IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1400-d1096600.html
   My bibliography  Save this article

Wavelet and Neural Network-Based Multipath Detection for Precise Positioning Systems

Author

Listed:
  • O-Jong Kim

    (Department of Aerospace Engineering, Sejong University, Seoul 05006, Republic of Korea)

  • Changdon Kee

    (Department of Aerospace Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea)

Abstract

Multipath errors are significantly challenging in radio navigation systems. In particular, multipath errors in indoor environments cause significant errors in the position domain because not only the building materials that surround the environment but also all objects inside the building can reflect the navigation signals. Multipath errors in outdoor environments, such as in global navigation satellite system (GNSS) signal applications, have been widely studied for precise positioning. However, multipath studies for indoor applications have rarely been conducted because of the complicated environment and the many objects made of various materials in small areas. In this study, multipath mitigation methods using a shallow neural network and a transfer learning-based deep neural network were respectively considered to overcome the complexity caused by the reflected signals in indoor environments. These methods classify each measurement according to whether the measurement exhibits a severe multipath error. Carrier-phase measurements broadcasted from the transmitter were used for the wavelet transform, and the magnitude values after the transform were used for neural network-based learning. Shallow and deep networks attain approximately 87.1% and 85.6% detection accuracies, respectively, and the positioning error can be reduced by 10.4% and 9.4%, respectively, after multipath mitigation.

Suggested Citation

  • O-Jong Kim & Changdon Kee, 2023. "Wavelet and Neural Network-Based Multipath Detection for Precise Positioning Systems," Mathematics, MDPI, vol. 11(6), pages 1-22, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1400-:d:1096600
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asif Khan & Jun-Sik Kim & Heung Soo Kim, 2021. "Damage Detection and Isolation from Limited Experimental Data Using Simple Simulations and Knowledge Transfer," Mathematics, MDPI, vol. 10(1), pages 1-26, December.
    2. Edoardo Savini & Cornelia Caragea, 2022. "Intermediate-Task Transfer Learning with BERT for Sarcasm Detection," Mathematics, MDPI, vol. 10(5), pages 1-14, March.
    3. Asif Khan & Hyunho Hwang & Heung Soo Kim, 2021. "Synthetic Data Augmentation and Deep Learning for the Fault Diagnosis of Rotating Machines," Mathematics, MDPI, vol. 9(18), pages 1-26, September.
    4. Yongjun Lee & Byungwoon Park, 2022. "Nonlinear Regression-Based GNSS Multipath Modelling in Deep Urban Area," Mathematics, MDPI, vol. 10(3), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan Zheng & Wenqin Zhao & Yaqiong Lv & Lu Qian & Yifan Li, 2022. "Health Status-Based Predictive Maintenance Decision-Making via LSTM and Markov Decision Process," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    2. Florentina Hristea & Cornelia Caragea, 2022. "Preface to the Special Issue “Natural Language Processing (NLP) and Machine Learning (ML)—Theory and Applications”," Mathematics, MDPI, vol. 10(14), pages 1-5, July.
    3. Yeong Rim Noh & Salman Khalid & Heung Soo Kim & Seung-Kyum Choi, 2023. "Intelligent Fault Diagnosis of Robotic Strain Wave Gear Reducer Using Area-Metric-Based Sampling," Mathematics, MDPI, vol. 11(19), pages 1-22, September.
    4. Jani Dugonik & Mirjam Sepesy Maučec & Domen Verber & Janez Brest, 2023. "Reduction of Neural Machine Translation Failures by Incorporating Statistical Machine Translation," Mathematics, MDPI, vol. 11(11), pages 1-22, May.
    5. Lefa Zhao & Yafei Zhu & Tianyu Zhao, 2022. "Deep Learning-Based Remaining Useful Life Prediction Method with Transformer Module and Random Forest," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    6. Dong-Kyeong Lee & Yebin Lee & Byungwoon Park, 2023. "Carrier Phase Residual Modeling and Fault Monitoring Using Short-Baseline Double Difference and Machine Learning," Mathematics, MDPI, vol. 11(12), pages 1-21, June.
    7. Miao Jiang & Xin Zhang & Chonghao Chen & Taihua Shao & Honghui Chen, 2022. "Leveraging Part-of-Speech Tagging Features and a Novel Regularization Strategy for Chinese Medical Named Entity Recognition," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
    8. Tahir Mehmood & Ivan Serina & Alberto Lavelli & Luca Putelli & Alfonso Gerevini, 2023. "On the Use of Knowledge Transfer Techniques for Biomedical Named Entity Recognition," Future Internet, MDPI, vol. 15(2), pages 1-27, February.
    9. Fengyun Xie & Gan Wang & Jiandong Shang & Enguang Sun & Sanmao Xie, 2023. "Gearbox Fault Diagnosis Based on Multi-Sensor Deep Spatiotemporal Feature Representation," Mathematics, MDPI, vol. 11(12), pages 1-19, June.
    10. Maria Luminita Scutaru & Catalin-Iulian Pruncu, 2022. "Mathematical Modeling and Simulation in Mechanics and Dynamic Systems," Mathematics, MDPI, vol. 10(3), pages 1-6, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1400-:d:1096600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.