IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i2p79-d1071756.html
   My bibliography  Save this article

On the Use of Knowledge Transfer Techniques for Biomedical Named Entity Recognition

Author

Listed:
  • Tahir Mehmood

    (Department of Information Engineering, University of Brescia, Via Branze 38, 25121 Brescia, Italy
    NLP Research Group, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy)

  • Ivan Serina

    (Department of Information Engineering, University of Brescia, Via Branze 38, 25121 Brescia, Italy)

  • Alberto Lavelli

    (NLP Research Group, Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy)

  • Luca Putelli

    (Department of Information Engineering, University of Brescia, Via Branze 38, 25121 Brescia, Italy)

  • Alfonso Gerevini

    (Department of Information Engineering, University of Brescia, Via Branze 38, 25121 Brescia, Italy)

Abstract

Biomedical named entity recognition (BioNER) is a preliminary task for many other tasks, e.g., relation extraction and semantic search. Extracting the text of interest from biomedical documents becomes more demanding as the availability of online data is increasing. Deep learning models have been adopted for biomedical named entity recognition (BioNER) as deep learning has been found very successful in many other tasks. Nevertheless, the complex structure of biomedical text data is still a challenging aspect for deep learning models. Limited annotated biomedical text data make it more difficult to train deep learning models with millions of trainable parameters. The single-task model, which focuses on learning a specific task, has issues in learning complex feature representations from a limited quantity of annotated data. Moreover, manually constructing annotated data is a time-consuming job. It is, therefore, vital to exploit other efficient ways to train deep learning models on the available annotated data. This work enhances the performance of the BioNER task by taking advantage of various knowledge transfer techniques: multitask learning and transfer learning. This work presents two multitask models (MTMs), which learn shared features and task-specific features by implementing the shared and task-specific layers. In addition, the presented trained MTM is also fine-tuned for each specific dataset to tailor it from a general features representation to a specialized features representation. The presented empirical results and statistical analysis from this work illustrate that the proposed techniques enhance significantly the performance of the corresponding single-task model (STM).

Suggested Citation

  • Tahir Mehmood & Ivan Serina & Alberto Lavelli & Luca Putelli & Alfonso Gerevini, 2023. "On the Use of Knowledge Transfer Techniques for Biomedical Named Entity Recognition," Future Internet, MDPI, vol. 15(2), pages 1-27, February.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:79-:d:1071756
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/2/79/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/2/79/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edoardo Savini & Cornelia Caragea, 2022. "Intermediate-Task Transfer Learning with BERT for Sarcasm Detection," Mathematics, MDPI, vol. 10(5), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florentina Hristea & Cornelia Caragea, 2022. "Preface to the Special Issue “Natural Language Processing (NLP) and Machine Learning (ML)—Theory and Applications”," Mathematics, MDPI, vol. 10(14), pages 1-5, July.
    2. Jani Dugonik & Mirjam Sepesy Maučec & Domen Verber & Janez Brest, 2023. "Reduction of Neural Machine Translation Failures by Incorporating Statistical Machine Translation," Mathematics, MDPI, vol. 11(11), pages 1-22, May.
    3. Lefa Zhao & Yafei Zhu & Tianyu Zhao, 2022. "Deep Learning-Based Remaining Useful Life Prediction Method with Transformer Module and Random Forest," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    4. Miao Jiang & Xin Zhang & Chonghao Chen & Taihua Shao & Honghui Chen, 2022. "Leveraging Part-of-Speech Tagging Features and a Novel Regularization Strategy for Chinese Medical Named Entity Recognition," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
    5. O-Jong Kim & Changdon Kee, 2023. "Wavelet and Neural Network-Based Multipath Detection for Precise Positioning Systems," Mathematics, MDPI, vol. 11(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:79-:d:1071756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.